

TECHNICAL DATA CATALOGUE

SA.CAT.Rev.31.03.2014

2014 EDITION

COMMERICAL CATALOGUE Technical & Product Data

Overview

The purpose of this catalogue is to aid you in making an informed decision in the selection of air conditioning components for your project. Advantage Air has a policy of continuous improvement therefore reserves the right to make changes, without notice, to any product or process in this catalogue to improve performance, design, reliability or function

SA.CAT.Rev.31.03.2014

Table of Contents

FLEXIBLE DUCTWORK	3
SIZING GUIDE	3
DUROFLEX	4
ALUFLEX	6
ACCOUSTIC FLEX	8
TEST CERTIFICATES	
METAL DIFFUSERS	
T-Bar Register	
SWIRL OUTLETS	20
SUPPLY AIR GRILLES	
TYPE DD	
TYPE SD	42
PLASTIC DIFFUSERS & GRILLES	43
STREEMLINE RANGE	43
ADJUSTABLE BLADE DIFFUSER KITS	43
FIXED BLADE DIFFUSER KITS	45
EGGCRATE GRILLE KITS	47
SSRV - STREEMLINE SECURITY RELIEF VENTS	
SILHOUETTE DIFFUSERS	
PLASTIC CUSHION HEAD	51
ROUND DIFFUSER	52
SWIVEL JET DIFFUSERS	54
BABY LINEAR GRILLE	56
LINEAR ELITE DIFFUSER	
AIRLINE DIFFUSER	60
METAL RETURN AIR GRILLES	61
Type-RA	61
PLASTIC RETURN AIR GRILLES	64
PURTECH RETURN AIR GRILLE	64

DOOR GRILLES
TYPE-DG
TYPE-DG-DR70
EGG CRATE GRILLES
CUSTOM RANGE71
TYPE-ECP
TYPE-ECA
CORES
WEATHER LOUVRES
Type – WPL75
Type – WL
ALUMINIUM DIFFUSION SUNDRY
Transfer Grilles
INSULATION
DUCT BOARD INSULATION
DUCT WRAP81
SONIC LINER
DAMPERS
OPPOSED BLADE DAMPER - Type – OBD83
DAMPER HARDWARE
ACCESSORIES
ACCESS DOORS
AIRTURN RAIL90
DUCTLOK FLANGING & FASTENERS91
DVK VALVES
PLASTIC EXHAUST
METAL EXHAUST
SUNDRY ITEMS
NOTES

FLEXIBLE DUCTWORK SIZING GUIDE

MAXIMUM RECOMMENDED AIR QUANTITY (LITRES PER SECOND)	FLEXIBLE DUCT DIAMETER (mm)
22 l/s	Ø 100
30 l/s	Ø 125
44 l/s	Ø 150
65 l/s	Ø 175
92 l/s	Ø 200
170 l/s	Ø 250
275 l/s	Ø 300
385 l/s	Ø 350
503 l/s	Ø 400
636 l/s	Ø 450
785 l/s	Ø 500
950 l/s	Ø 550

FLEXIBLE DUCTWORK DUROFLEX

CONSTRUCTION

Supplied in 10 metre lengths.

Core

- Core is constructed from 12 micron clear polyester film bonded to 12 micron clear polyester film with water based fire retardant glue approximately 18 grams per m2 encapsulating helically wound spring steel wire.
- · The adhesives give the core a black appearance.

Insulation

- Thick polyester blanket as specified by the customer to comply with the BCA.
- Other insulation options available on request.

Jacket

• Inner surface 12 micron clear polyester film bonded to 12 micron labelled metallised polyester film with water based fire retardant glue approximately 18 grams per m₂.

APPLICATIONS

· DUROFLEX is a less expensive alternative to aluminium duct.

· Is suitable for residential and commercial refrigerated air conditioning, evaporative cooling, heating and ventilation applications. Not recommended for return air flexible ductwork on commercial projects, or on systems with AC units larger than 6Hp (18kW).

TECHNICAL

DUROFLEX has been AWTA & SABS tested and complies with the requirements of the

Building Code of Australia & South African standards

AS 4254 & AS 1530 Part 3

DUROFLEX has passed all of the above tests and has obtained a "0003 rating". Copies of test certificates can be viewed on pages 10 to 17

Operating range

- Between -10°C and +80 °C
- Between -200Pa and +1000Pa internal pressure
- Maximum velocity 20 m/s

DIMENSIONS

FULLY EXTENDED LENGTH		
MODEL NO.	DIA D mm	LENGTH mm
D10	100	10000
D12	125	10000
D15	150	10000
D17	175	10000
D20	200	10000
D25	250	10000
D30	300	10000
D35	350	10000
D40	400	10000
D45	450	10000
D50	500	10000
D55	550	10000

FLEXIBLE DUCTWORK DUROFLEX - PERFORMANCE

CHARACTERISTICS

FLEXIBLE DUCTWORK ALUFLEX

CONSTRUCTION

• Aluflex is supplied in 10 metre lengths.

Core

• Core is constructed from 15 micron aluminium film bonded to 15 micron aluminium film with water based fire retardant glue approximately 18 grams per m_2 encapsulating helically wound spring steel wire.

Insulation

• Thick polyester blanket as specified by the customer to comply with the BCA.

• Other insulation options available on request.

Jacket

• 15 micron aluminium film bonded to 15 micron labelled aluminium film with water based fire retardant glue approximately 18 grams per m₂.

APPLICATIONS

Aluflex is a high quality product and is suitable for residential and commercial refrigerated air conditioning, evaporative cooling, heating and ventilation applications.
Suitable for return air flexible ductwork on commercial applications.

TECHNICAL

Aluflex has been AWTA & SABS tested and complies with the requirements of the Building Code of Australia & South African standards

AS 4254& AS 1530 Part 3

Aluflex has passed all of the above tests and has obtained a "four zero rating". Copies of test certificates can be viewed on pages 10 to 17

Operating range

- Between -10°C and +80 °C
- Between -200Pa and +1000Pa internal pressure
- · Maximum velocity 20 m/s

DIMENSIONS

MODEL NO.	DIA D mm	LENGTH mm
A10	100	10000
A12	125	10000
A15	150	10000
A17	175	10000
A20	200	10000
A25	250	10000
A30	300	10000
A35	350	10000
A40	400	10000
A45	450	10000
A50	500	10000
A55	550	10000

Ľ)
ι	J
F	2
()

FLEXIBLE DUCTWORK

ALUFLEX - PERFORMANCE CHARACTERISTICS

PRESSURE DROP Pa/m 20 20 04 0.5 9 ĝ 8 88 Я 8 8 ð 8 91A 100 ĝ 0/4 200 8 5 100 6 AIR QUANTITY Litres / second 412 0/4 (3) 3) 60 3 20000 $\overline{c}o_{O}$ DIA 350 mm ma 0/Ą To at 400 mm (FE ⁷⁵0 η_{η_1} **20000** 3 48 48 100000 ALCONT. 200000 50000 100000 200000

FLEXIBLE DUCTWORK ACCOUSTIC FLEX

CONSTRUCTION

• Accoustic Flex is supplied in 10 metre lengths.

• <u>Not a stock item and will require 10 days</u> lead time to manufacture & supply.

Core

• Constructed from aluminium tape on the inside and metallised polyester tape on the outside which encapsulates a spiral galvanised steel wire and is chemically bonded using self extinguishing fire retardant adhesives.

• The appearance of the core is silver with perforations at regular intervals.

Insulation

To achieve the published insertion losses the core must be insulated with the following blanket:

- Thick polyester blanket as specified by the customer to comply with the BCA.
- · Other insulation options available on request.

Sleeve

• The sleeve is constructed from a silver metallised polyester tape. As an optional extra insulated duct can be supplied with reinforced sleeve. This must be specified at the time of ordering.

• The sleeve must be fully taped to the spigot as the sleeve acts as the air envelope.

APPLICATIONS

• Accoustic flex provides higher insertion losses than standard flexible duct and is ideal for reducing low frequency noise levels in air conditioning systems. • Not recommended for return air flexible ductwork on commercial projects, or on systems with AC units larger than 6Hp (18kW).

TECHNICAL

Accoustic flex has passed all of the above tests and has obtained a "0003 rating". Copies of test certificates can be viewed on pages 10 to 17

Operating range

Accoustic flex is designed to operate in the following range:

- Between -10°C and +80 °C
- Between -200Pa and +1000Pa internal pressure
- Maximum velocity 20 m/s

DIMENSIONS

MODEL NO.	DIA D mm	LENGTH mm
AC10	100	10000
AC15	150	10000
AC20	200	10000
AC25	250	10000
AC30	300	10000
AC35	350	10000
AC40	400	10000
AC45	450	10000
AC50	500	10000

FLEXIBLE DUCTWORK ACCOUSTIC FLEX PERFORMANCE CHARACTERISTICS

FLEXIBLE DUCTWORK TEST CERTIFICATES

11 2000 100 100

SABS

Your ref.:	Fax dd 2000/09/19
Our ref.:	19/3/21/3
Enquiries:	WA van der Hoogt
Tel.:	(012) 428-6316
Date:	16 October 2000

Advantage Air Attention: Mr C Whittle PO Box 3575 EDENVALE 1610

Dear Sirs

SURFACE FIRE INDEX TEST ON FLEXIBLE DUCTING MATERIAL

Enclosed please find our report No 5409/84066/00 A-B (W/O 1561168) on the surface fire index test conducted on the materials submitted by you.

Our invoice in respect of this service will be forwarded under separate cover.

Yours faithfully

WA van der Hoogt TECHNOLOGIST: FIRE PROTECTION ENGINEERING

SOUTH AFRICAN BUREAU OF STANDARDS I Dr Lategan Road Groenkloof Pretoria Private Bag X191 Pretoria 0001 Tel. (012) 428 7911 Int. code +27 12 Fax (012) 344 1568

The second s

FLEXIBLE DUCTWORK TEST CERTIFICATES

South African Bureau of Standards

Suid-Afrikaanse Buro vir Standaarde

REPORT VERSLAG

No 5409/84066/B (W/O 1561168)

Page/Bladsy 2 of/van 2

2. NATURE AND METHOD OF TEST

The sample was evaluated for compliance with subsection 3.5.2 of SABS 1238: 1979 "Airconditioning ductwork". This standard specifies surface fire index test to be conducted in accordance with SABS 0177: Part 3 "Surface fire index of finishing materials".

The 1 mm spiral galvanized wire was removed in order to lay the specimens flat on an expanded metal grid. The outside of each specimen was exposed to the heat of the furnace.

3 DATE OF RECEIPT

19 September 2000

4 DATE OF TEST

04 October 2000

5 RESULTS

The following results were obtained from the test:

Index	Results	Requirement of SABS 1238: 1979 Subsection 3.5.2	Compliance
Spread of flame index	Nil	0,6	Yes
Heat contribution index	Nil	0,6	Yes
Smoke emission index	Nil	0,6	Yes
Surface fire index	Nil	0,5	Yes

The sample as described under section 1 of this report complied with the requirements of subsection 3.5.2 of SABS 1238:1979 "Air-conditioning ductwork".

WA van der Hoogt TECHNOLOGIST: FIRE PROTECTION ENGINEERING

ASW van Rensburg TECHNICIAN

This report relates only to the samples tested and is issued subject to the conditions printed on the back of Page 1. It does not imply approval by the South African Bureau of Standards of the quality and/or performance of the commodily that has been tested. It does not authorize the use of the Standardization Mark. Hierdie verslag is van toepassing slegs op die getoetste monstors en word uitgereik behoudens die voorwaardes op die keersy van bladsy 1 gedruk. Dit beteken nie dat die Suid-Afrikaanse Buro vir Standaarde die kwaliteit en/of werkverrigting van die getoetste artikel goedkeur nie. Dit verleen ook nie die reg om die Standaardmerk te gebruik nie.

FLEXIBLE DUCTWORK TEST CERTIFICATES

SHBS

TEST REPORT TOETSVERSLAG

South African Bureau of Standards 1 Dr Lategan Road, Groenkloof Private Bag X191, Pretoria, 0001 Tel (012) 428-7911 Fax (012) 344-1568 Int. code +27 12 Suid-Afrikaanse Buro vir Standaarde Dr Lateganweg 1, Groenkloof Privaatsak X191, Pretoria, 0001 Tel (012) 428-7911 Faks (012) 344-1568 Int. kode +27 12

Advantage Air PO Box 3575 EDENVALE 1610

L

Your ref:	Fax dd 00-09-19
Our ref:	19/3/21/3
Enquiries:	WA van der Hoogt
Tel:	(012)428-6316
No.:	5409/84066/00B (W/O 1561168)
Page:	1 of 2
Date:	2000-10-16

SURFACE FIRE INDEX TEST ON FLEXIBLE DUCTING MATERIALS

NOTE:-

- Terminology between quotation marks are as given by the sponsor

- All numeric values in this report are nominal

- It is recommended that the user obtains confirmation from the South African Bureau of Standards that the contents of this report are valid in respect of a given lot of material.

1 DESCRIPTION OF SAMPLE

The sample consisted of a cylindrical, insulated, flexible ducting marked "WHITE".

The following measurements were recorded:

Length	2	2400 mm (when fully extended)
Diam	:	150 mm
Mass	:	0,95 kg

The following technical data of the ducting was supplied by the sponsor:

"Aluminium flexible ducting insulated (3 layers)

1. Layer 1 (Inner) - Aluminium flexible ducting

 Layer 2 (Middle) - Poly-fibre which is 100 % polyester and is made up of the following fibres:

a) 13 DTEX x 64 mm Hollofibre
b) 6.7 DTEX x 64 mm Solid
c) 4 Denier x 51 mm BI component

3. Layer 3 (Outer) - Sleeve, which is constructed, from silver tape".

/2 NATURE

This report relates only to the specific sample(s) tested as identified herein. It does not imply SABS approval of the quality and/or performance of the item(s) in question and the test results do not apply to any similar item that has not been tested. (Refer also to the complete conditions printed on the back of official test reports.) Hierdie verstag het slegs betrekking op die spesifieke monster(s) wat getoets is, soos hierin geïdentifiseer. Dit impliseer nie dat die kwaliteit en/of prestasie van die betrokke artikel(s) deur die SABS goedgekeur is nie en die toetsresultate is nie van toepassing op 'n soortgelyke artikel wat nie getoets is nie. (Sien ook die volledige voorwaardes op die rugkant van amptelike toetsverslae.)

SA.CAT.Rev.31.03.2014

FLEXIBLE DUCTWORK TEST CERTIFICATES

	Australian Wool Testing Authority Ltd - trading a	as AWTA Product Testing	
	A.B.N. 43 006 014 106 1st Floor, 191 Racecourse Road, Fleminj P.O. Box 240, North Melbourne, V Phone (03) 9371 2400 Fax (03)	gton, Victoria 3031 ictoria 3051 9371 2499	لار.
- 14. 	TEST REPOR	RT	
CLIENT : AUTEX PTY 166 BAMFI WEST HEID	LTD ELD ROAD ELBERG VIC 3081	TEST NUMBER : 7- ISSUE DATE : 14 PRINT DATE : 14	580863-NV /09/2011 /09/2011
SAMPLE DESCRIPTION	1 X Roll of White Polyester In Colour: White Nominal Composition: Polyester	sulation	
	Nominal Mass: 400 g/m2 Nominal Thickness: 55.00mm		
ISO 8302-1991	Thermal Insulation (Guarded Ho	t Plate Test)	
	Test Conditions:		
	Mean Heat Flux(W/m2) 3.791 Total Rct (m2K/W) 1.320 Recovered thickness 53.7mm Average product density (kg/m3) (ASTM C167) 8.96	
	Calculated R value for recover	ed thickness N/A	
The thermal resist testing in accorda state thermal prop method of test	ance values contained in this r nce with ISO 8302 and specifica erties of the tested product as	eport are determined l ally describe the stead sociated with that	by- iy
Results contained product is used un product was tested	in this report do not infer the der conditions differing from t	ermal information where hose under which the	a the
It should be noted testing for the pr been tested at the from the client's manufacture, we ha of the thermal res	that whilst sufficient time ha oduct to recover from compress thickness nominated in the rep expectations of nominated thick ve therefore included the addit istance at the client's nominat	s been allowed prior t ion during transit it ort. This may differ ness at the point of ional calculated measu ed thickness	io has ire
The results contai do not necessarily	ned in the report are those whi denote compliance in entirety	ch have been requested to ASNZS 4859.1	l and
11500000000000000000			12.1127141527

AWTA

This document, the name AWTA Product Testing and AWTA Ltd may be used in advertising providing the content and format of the advertisement have been approved in advertise by the Managing Director of AWTALtd. 6

0205/11/06

APPROVED SIGNATORY

This document shall not be reproduced except in full and shall be rendered void if amended or altered.

A. JACKSON B.Sc. (Hons) AGING DIRECTOR Int

FLEXIBLE DUCTWORK TEST CERTIFICATES

C Australian Wool Testing Authority Ltd Copyright - All Rights Reserved Samples, and their identifying descriptions have been provided by the client unless otherwise stated. AWTA Ltd makes no warranty, implied or otherwise, as to the source of the tested samples. The above test results relate only to the sample or samples tested. The above test results are designed to provide THE CLIENT WITH GUIDANCE INFORMATION ONLY.

This document shall not be reproduced except in full and shall be rendered void if amended or altered. This document, the name AWTA Product Testing and AWTA Ltd may be used in advertising providing the content and format of the advertisement have been approved in advance by the Managing Director of AVTA Ltd.

APPROVED SIGNATOR CKSON B.Sc. (Hons)

0205/11/06

FLEXIBLE DUCTWORK TEST CERTIFICATES

AS/NZS 4859.1:2002 - Materials for the provisio	thermal Insulation ns (Section 2.3) - (of buildings. Part 1: (Thermal Resistance)	General criteria and	d technical	
Date:	06-Aug-09	The second s]
Project Number:	176401				
Sample Description and orientation:	WHITE PLO	YESTER BATT THICK	NESS: 62mm MASS	S 420g/m2	
	Sample 1	Sample 2	Mean		4
Test Plate Area:	6.58 x 10 ⁻²	6.58 x 10 ⁻²	6.58 x 10 ⁻²		
Hot Surface Temperature:	27.00	27.00	27.00	°c	
Cold surface Temperature:	19.02	19.20	19.11	Toc .	
ΔΤ	7,98	7.80	7.89	°c	
Mean Temperature	23.01	23 10	23.05	≓∘c	Accentab
Relative Humidity	65.00	65.00	65.00		
Heat Flux:	8 22	7.60	7.96		
Maan Thormal Posistance (P)	0.52	1.00	1.50		
Mean memai Kesistance (K)	1.23		1.13		
	000				
Tested Thickness	62.0	mm *#			
Tested Thickness Client Nominated Thickness Δ Thickness	62.0 62.0 N/A	mm *# mm			
Tested Thickness Client Nominated Thickness Δ Thickness Test Method:	62.0 62.0 N/A	mm *# mm Thermal insulation - De	termination of stead	v-state thermal	
Tested Thickness Client Nominated Thickness A Thickness Test Method:	62.0 62.0 N/A ISO8302:1991 - resistance	mm *# mm Thermal insulation - De and related properties -	termination of stead Guarded hot plate a	y-state thermal pparatus.	1
Tested Thickness Client Nominated Thickness Δ Thickness Test Method: Wind Velocity:	62.0 62.0 N/A ISO8302:1991 - resistance	mm *# mm Thermal insulation - De and related properties -	termination of stead Guarded hot plate a	y-state thermal pparatus.]
Tested Thickness Client Nominated Thickness Δ Thickness Test Method: Wind Velocity: Mass Change:	62.0 62.0 N/A ISO8302:1991 - resistance	mm *# mm Thermal insulation - De and related properties - 0.00	termination of stead Guarded hot plate a	y-state thermal pparatus.]
Tested Thickness Client Nominated Thickness Δ Thickness Test Method: Wind Velocity: Mass Change: Mass ^{(nitial}	62.0 62.0 N/A ISO8302:1991 - resistance 0.00	mm *# mm Thermal insulation - De and related properties - 0.00	termination of stead Guarded hot plate a	y-state thermal pparatus.]
Tested Thickness Client Nominated Thickness Δ Thickness Test Method: Wind Velocity: Mass Change: Mass ^{Change} : Mass ^{Change} : Mass ^{Change} :	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20	termination of stead Guarded hot plate a 0.00 122.62 122.62	y-state thermal pparatus.]
Tested Thickness Client Nominated Thickness Δ Thickness Δ Thickness Wind Velocity: Mass Change: Mass ^{Change} :	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 0.00	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00	termination of stead Guarded hot plate a 0.00 122.62 122.62 0.00	y-state thermal pparatus.]
Tested Thickness Client Nominated Thickness Δ Thickness Δ Thickness Wind Velocity: Mass Change: Mass Change: Mass ^{Final} Δ mass Dimensions (Complete Specimen)	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 0.00	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00	termination of stead Guarded hot plate a 0.00 122.62 122.62 0.00	y-state thermal pparatus. m/s]
Tested Thickness Client Nominated Thickness Δ Thickness Δ Thickness Test Method: Wind Velocity: Mass Change: Mass Change: Mass ^{Final} Δ mass Dimensions (Complete Specimen) Thickness Math	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 120.10 0.00 62.00	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00	termination of stead Guarded hot plate a 0.00 122.62 122.62 0.00	y-state thermal pparatus. m/s 9 9 % m]
Tested Thickness Client Nominated Thickness Δ Thickness Δ Thickness Wind Velocity: Mass Change: Mass Dimensions (Complete Specimen) Thickness Width Length	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 120.10 62.00 520.00 525.00	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00 mm mm	termination of stead Guarded hot plate a 0.00 122.62 122.62 0.00 0.062 0.520 0.525	y-state thermal pparatus. m/s 9 9 % m m m]
Wind Velocity: Mass Change: Mass ^{Initial} Mass ^{Initial} Mass ^{Initial} Mass ^{Initial} Mass <initial< td=""> Mass<initial< td=""> Mass Mass</initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<></initial<>	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 120.10 0.00 62.00 520.00 525.00	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00 mm mm mm mm mm	termination of stead Guarded hot plate a 0.00 122.62 122.62 0.00 0.062 0.520 0.525	y-state thermal pparatus. m/s 9 9 % m m m]
Tested Thickness Client Nominated Thickness Δ Thickness Δ Thickness Wind Velocity: Mass Change: Mass ^{Initial} Mass ^{Initial} Mass ^{Initial} Mass ^{Initial} Dimensions (Complete Specimen) Thickness Width Length Tested Volume	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 120.10 0.00 62.00 520.00 525.00 0.0169 7.24	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00 mm mm mm mm mm mm mm	termination of stead; Guarded hot plate a 0.00 122.62 122.62 0.00 0.62 0.520 0.525	y-state thermal pparatus. m/s 9 9 9 % 1 % 1 m m m]
Tested Thickness Client Nominated Thickness Δ Thickness Δ Thickness Wind Velocity: Mass Change: Mass Change: Mass Change: Mass Change: Mass ^{Initial} Mass ^{Initial} Δ mass Dimensions (Complete Specimen) Thickness Width Length Tested Volume Density (δ) Transfer Factor (ft)	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 0.00 62.00 520.00 525.00 0.0169 7.24	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00 mm mm mm mm mm mm mm mm mm	termination of stead Guarded hot plate a 0.00 122.62 122.62 0.00 0.62 0.520 0.525	y-state thermal pparatus. m/s 9 9 % m m m m]
Tested Thickness Client Nominated Thickness Δ Thickness Δ Thickness Wind Velocity: Mass Change: Mass Change: Mass Change: Mass Change: Mass ^{Initial} Mass ^{Initial} Δ mass Dimensions (Complete Specimen) Thickness Width Length Tested Volume Density (δ) Transfer Factor (7) Amesent Thermal Conductivity(1)	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 0.00 520.00 520.00 525.00 0.0169 7.24 0.0646	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00 mm mm mm mm mm mm mm mm mm mm mm	termination of stead Guarded hot plate a 0.00 122.62 122.62 0.00 0.062 0.520 0.525	y-state thermal pparatus. m/s 9 9 9 % m m m m w/mK	(Calculated
Wind Velocity: Mass Change: Mass Mass Dimensions (Complete Specimen) Thickness Width Length Tested Volume Density (8) Transfer Factor (7) Apparent Thermal Conductivity(λ)	62.0 62.0 N/A ISO8302:1991 - resistance 0.00 120.10 120.10 0.00 520.00 520.00 525.00 0.0169 7.24 0.0646 0.0504	mm *# mm Thermal insulation - De and related properties - 0.00 125.20 125.20 0.00 125.20 0.00 0.00 mm mm mm mm mm m3 kg/m ³ 0.0604 0.0604	termination of stead Guarded hot plate a 0.00 122.62 122.62 0.00 0.062 0.520 0.525 0.0525	y-state thermal pparatus. m/s 9 9 % m m m m W/mK W/mK W/mK	(Calculated) (Calculated)

Where applicable. The mass applied is 9.836 kg

Where applicable the foil product was tested with the foil face down through a guarded polystyrene 50mm thick air gap.

- *1 Calculated in accordance with ISO8302:1991(E) Section 3.5.2
- *2 Calculated in Accordance with ASTM C653-97 Section 3.2.1.

*3 Calculated as 1/R.

*4 Linear interpolation based on nominal thickness from measured R-Value

Kelvin units and measured Temperature (^oC) units may be read as interchangable where variations from absolute zero are not required.

FLEXIBLE DUCTWORK TEST CERTIFICATES

1

Continuation of Report on Measurement of Thermal Transmission Properties.

MEASUREMENT MHF-1316	
Sample Details	
Measurement sponsor	Autex Pty Ltd 166 Bamfield Road West Heidelberg VIC 3081
Sample manufacturer	As above
Sample description and identification	Sample described as: "White polyester fibre batt insulation nominally 430 mm x 1.17 m", and identified as "Batch 134 1210, pack No. 0001,
Measurements	
Measurement reference number	MHF-1316
Calibration reference material	NIST glass fibre transfer standard
Ambient temperature	23 °C
Ambient humidity	27 %
Heat flow direction	Up
Heat flow meter surface	Top
Special preparation requirements	Two batts of median thickness were selected from a pack of 8 batts and conditioned for more than 24 hours.
Special measurement requirements	Two batts placed side-by-side centrally under 4 heat flow meters and measured at approximately 99.5 % of mean free thickness to give nominal compression between hot and cold plates.
No. of free thickness measurement points	24
Mean thickness before measurement	109.6 mm
Standard deviation in thickness readings	2.8 mm
Length x width before measurement	1160 mm x 914 mm (aggregate of 2 batts)
Weight before measurement	0.842 kg (aggregate of 2 batts)
Free density before measurement	7.3 kg/m ³

.

FLEXIBLE DUCTWORK TEST CERTIFICATES

Continuation of Report on Measurement of Thermal Transmission Properties. Measurement Reference MHF-1316.

Hot plate temperature	33.0 °C
Cold plate temperature	12.9 °C
Plate temperature difference	20.1 K.
Mean plate spacing	109.0 mm
Sample density between plates	7.3 kg/m ³
Sample mean temperature	23.0 °C
Duration of measuring period	40 minutes
Size of heat flow meters	230 mm x 230 mm
Number of heat flow meters	4
Mean heat flow	11.75 W/m ²
Mean maximum variation between measured heat flows	2.1 %
Mean thermal conductance	0.590 W/m^2 .K ± 6 %
Mean thermal conductivity	0.0643 W/m.K ± 8 %
Mean thermal resistance	1.695 m^2 .K/W \pm 6 %
Variation in thermal resistance over measuring period	0.5 %

METAL DIFFUSERS

T-Bar Register

T-BAR REGISTER

MODEL: JM-602M REMOVABLE CORE

SPECIFICATIONS

Size:	Outer frame either 595mm x 595mm metric
Neck	450mm x 450mm
Material:	Pressed Metal - Steel - Powder Coated
Colour:	Standard white but for large numbers we are prepared to use other colours, but there may be a cost penalty.

ADVANTAGES

- Lightweight
- No visible joints on face
- Reduces possibility of corrosion
- Easy to clean
- · Captive air system, no air leak to ceiling space

TECHNICAL DATA

I/S	NR	ра	Throw
100	1 <u>27</u>	-	1.0
150			1.4
200	-	-	1.8
250	22	5	2.3
300	24	10	3.5
400	26	15	5.5
500	32	25	6.3
600	36	35	6.9
700	42	45	7.2

METAL DIFFUSERS

T-Bar Register - Performance data

		450/595 4-Wa	y ADCD		
	STATIC	Throw (m) velo	to terminal ocity		NOISE
AIRFLOW L/s	PRESSURE Pa	0.5 m/s	0.25 m/s	CORE m/s	RATING
160	3	2.3	3.2	0.8	28
207	4	3	4.2	1	39
250	7	3.6	5	1.2	44
349	8	5	*	1.6	53
504	23	*	*	2.4	64
590	32	*	*	2.8	69
710	44	*	*	3.3	75

NOTE: * indicates throw greater than 5.5m.

SWIRL OUTLETS

Preliminary remarks

KRANTZ KOMPONENTEN SWIRL outlets of the RA-N3 series have 24 fixed SWIRL vanes and are available with square or circular face. They generate high-quality diffuse air flow according to the principle of turbulent mixing ventilation. They can be installed free-hanging from the ceiling, above open grid or expanded metal ceilings, or flush with either closed false ceilings or square tile ceilings.

The RA-N3 offers a very large volume flow rate range. Using one nominal size for RA-N3 outlets within a room enables to get a uniform ceiling design. If only a small volume flow rate is required, a collar can be inserted in the outlet so as to obtain the requested air flow range; the nominal size of all ceiling-mounted RA-N3 outlets being the same, the ceiling design keeps its harmony. For perimeter and corner zones it is possible to fit the outlets (inside) with segment cover discs. These optional discs are designed to cover certain outlet segments so as to adapt the air discharge direction to the room layout.

RA-N3 SWIRL outlets achieve a high level of thermal comfort and can be used for volume flow rates up to 400 l/s [1440 m3/h] at temperature differences up to -12 K when cooling and +10 K when heating for ceiling heights up to 3 m (> 3 m = +5 K).

Range of application

Size	Collar	Volume I/s	flow rate V m3/h	Max. temperature difference supply air–indoor air $\Delta \vartheta$				
	0	56 – 175	200 – 630					
DN 355	2	38 – 122	135 – 440	-12 K when cooling				
	4	26 – 89	95 – 320	+10 K when heating				
	0	125 – 400	450 – 1440					
DN 500	2	86 – 280	310 – 1010	(> 3 m)				
	4	61 – 200	220 – 720					

Mode of operation

The SWIRL outlet **1** discharges the supply air in the horizontal direction, this feature being enhanced by the special shape of the exit **1a**. The high-turbulence supply air jets induce a large proportion of indoor air, which leads to the fast equalization of supply air and indoor air temperatures as well as to a rapid decrease in jet velocity.

Thanks to its stable supply air distribution pattern at low sound power levels this outlet can be used for a very wide range of air volume flow rates. Inserting a collar in the outlet enables to additionally vary the flow rate range.

Construction design

The RA-N3 is available in 2 nominal sizes: DN 355 and DN 500. The circular model is fitted on the outside with a flush contact edge for ceiling attachment (see detail Y on page 4). The outlet with square face has a 90° turn-up for installation in square tile ceilings (see detail Z on page 4).

Both outlet models are made from powdercoated sheet metal and are fastened to the reducer or connection box with a central screw **5** whose head is concealed by a cap **5a** having the same powder coating as the outlet.

Installation options

The following connection types with related accessories are available for connecting the outlet to the duct system.

Connection type A, with reducer for connection to a circular duct or a flexible duct

Connection type D, with connection box for a closed ceiling

Connection type A The 'A' reducer is fitted with 3 suspension brackets staggered by 90°, for fixing to the ceiling, as well as with a screw nut for the central fastening of the outlet. The reducer can be connected to a spiral seam duct or to a flexible duct. For installation in a closed false ceiling upon completion of said ceiling, the SWIRL outlet with flush contact edge shall be inserted into the reducer through the ceiling cutout and screwed up.

Connection type D The RA-N3 outlet is connected to a circular duct via the lateral spigot of a flat connection box. This connection type is suitable for outlets to be installed above open or closed false ceilings. The connection box is fitted with 4 suspension brackets for fixing to the ceiling and a screw nut for the central fastening of the outlet. The optional volume flow damper positioned in the lateral connection spigot can be adjusted through the openings of the SWIRL outlet. As an option, this connection box can be fitted with acoustic lining.

SWIRL OUTLETS

Connection type F, with connection box for a square tile ceiling

Connection type F This connection type is particularly suitable for square tile ceilings. The square SWIRL outlet with connection box is inserted into the ceiling from the top in place of a ceiling tile. The connection box is fixed to the load-bearing ceiling and the outlet is screwed to the connection box.

SWIRL outlets installed above an open grid ceiling. The return air is removed evenly through the whole ceiling surface and extracted by the main return air duct positioned immediately above the outlets.

Sketches of installation options

Ť

H2-

Material

Galvanized sheet

metal

T

Dimensions of connection type A

Top view of RA-N3 without and with collar

Without collar

Key for all pages 1 Radial outlet

1a Exit

2

1b Collar²⁾

With collar 2 or 4

Material Sheet metal. powder-coated

Brass, powder-coated

Mineral wool

Reducer Circular duct connection Aluminium Connection box Galvanized sheet metal

- Central fastening screw M8 5
- 5a Screw cap 6 Acoustic lining (optional)

Optional segment cover discs 4) for adapting air discharge to room layout

Key for all pages

- Sleeve at connection box D 7
- Spigot at connection box 8
- V damper (optional) 9
- 10 Central fastener for radial outlet
- Suspension bracket 11
- Bore for suspension by others 12 Threaded rod or quick fastener, (by others) 13
- Adjusting device for V damper 14
 - (adjustable from room)

	Size / D ₁ Collar H ₃ mm		Type R	A-N3Q	Type F	RA-N3R		Weight				
Size / D ₁			Ceiling tile	□ E ³⁾ mm	D ₂ ¹⁾ mm	D ₄ mm	H ₀ mm	H ₁ mm	H ₂ mm	H ₄ mm	M x L _S mm	in kg Air outlet
DN 355/249	0		LT 600	LT 202			450	171	111			
DN 355/199	2 4	27	□ 625	□ 595 □ 620	405 470	405	176	136	57	8 x 80	approx. 2.0	
DN 500/354	0		T 600	LT 505			585	199	139		8 x 110	
DN 500/314	2 4	36	□ 625	□ 620	580 675	675	565	219	159	66		approx. 3.6

1) Recommended ceiling cutout

2) Optional segment cover discs for one-way or multi-way discharge ³⁾ Other square dimensions and rectangular design on request

⁴⁾ The segment cover discs can be turned so as to adapt the air discharge direction to the room lavout

01.2007 BI. 4 JS 4131 E

Dimensions of connection types D and F

	_							Conn	ectio	n typ	e D								Con	nectio	on typ	e F			
Size / ø-D ₁	Colla	L ₁	В	L	B ₁	Н	H ₁	H ₂	H ₃	D21)	D ₃	L ₂	а	MxLs	G ³⁾	□ E ²⁾	$\square B_2$	B ₃	L ₄	L ₅	H ₄	H ₅	H ₆	MxLs	G ⁴⁾
	-	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
DN 355/249	0	60				275	316		175						6.2	505		346		269	328		193		7.1
DN 355/199	2 4	40	435	420	218	225	266	54	150	405	470	365	37	8 x 160	6.0 6.2	620	488	372	210	303	278	66	166	8 x 248	7.0 7.2
DN 500/354	0					380	432		238						11.7	505		384		302	443		253		9.5
DN 500/314	2 4	60	580	565	290	340	392	65	218	580	675	510	48	8 x 248	11.7 12.0	595 620	588	405	260	319	403	76	233	8 x 358	9.8 10.1

1) Ceiling cutout

2) Other dimensions on request

Weight with Vdamper, without acoustic lining
 Weight with celler 4 for DE = 505 mm

SWIRL OUTLETS Comfort criteria and minimum air outlet centre spacing

Comfort criteria

The layout of the outlet will be based on compliance with the required maximum permissible indoor air velocities1). First you have to determine the maximum specific volume flow rate V. $_{Sp}$ max depending on the indoor air velocity u and the discharge height H as per Graph 1. The minimum outlet centre spacing tmin will then be determined according to Graph 2 on the basis of the maximum specific volume flow rate and the outlet volume flow rate.

The layout criterion (Graph 1) is based on $\Delta \vartheta_{max} = -10$ to -12 K If the maximum temperature difference is lower, $V_{Sp max}$ can be increased by the following percentage: $\Delta \vartheta_{max} = -8$ K $\rightarrow V_{Sp max}$ 15% higher $\Delta \vartheta_{max} = -6$ K $\rightarrow V_{Sp max}$ 35% higher $\Delta \vartheta_{max} = -4$ K $\rightarrow V_{Sp max}$ 70% higher

Maximum specific volume flow rate

Key for all graphs:

u

н

- V_{A max} = Maximum volume flow rate per air outlet when cooling
- $\dot{V}_{A \min}$ = Minimum volume flow rate per air outlet when cooling
- \dot{V}_A = Selected volume flow rate per air outlet
- $V_{Sp max}$ = Maximum specific volume flow rate per m² of floor area
 - = Maximum permissible indoor air velocity
- t_{min} = Minimum air outlet centre spacing
 - = Discharge height
- L_{WA} = Sound power level

 Δp_t = Total pressure loss

Minimum air outlet centre spacing

SWIRL OUTLETS Layout sheet for connection type A

Layout example				
Size			DN 355	DN 500
Application			Office	Department store
1 Supply air volume flow rate	Ý	l/s	650	2 780
2 Discharge height	Н	m	3.2	3.6
3 Floor area	А	m ²	120	600
4 Max. permissible sound power level	L _{WA}	dB(A)	35	45
5 Comfort criteria (see page 6 – Max. perm. indoor air veloo – Max. specific volume) city u	m/s	0.2	0.25
flow rate - Actual specific volume		, l/(s • m²)	9.5	10.8
flow rate [from 1 : 3]	V _{Sp tats}	l/(s • m ²)	5.4	4.6

From nor	nogram			
Size			DN 355	DN 500
6 V _{A max}		l/s	140	180
7 VA selecte	ed	l/s	110	140
8 Z	[from 1:7]	units	6	17
9 L _{WA}	c	B(A) ref. 10 ⁻¹² W	≈23	≈41
10 Δp _t		Pa	≈16	≈35
11 t _{min}	[Graph on page 6] m	3.4	3.6

Layout sheet for connection type D and F

Layout example				
Size			DN 355	DN 500
Application			Office	Department store
1 Supply air volume flow rate	Ý	l/s	650	2 780
2 Discharge height	Н	m	3.2	3.6
3 Floor area	А	m ²	120	600
4 Max. permissible sound power level	L _{WA}	dB(A)	35	45
5 Comfort criteria (see page 6) – Max. perm. indoor air veloc – Max. specific volume	ity u	m/s	0.2	0.25
flow rate	₿ V _{Sp max}	l/(s • m²)	9.5	10.8
flow rate [from 1:3]		l/(s • m²)	5.4	4.6

From nor	nogram			
Size			DN 355	DN 500
6 V _{A max}		l/s	140	180
7 V _{A selec}	ted	l/s	110	140
8 Z	[from 1 : 7]	units	6	17
9 L _{WA}		dB(A) ref. 10 ⁻¹² W	≈32	40
10 Δpt		Pa	≈16	≈27
11 t _{min}	[Graph on page 6	5] m	3.4	3.6

Sound power level and insertion loss

Connection type A

Connection type D

Connection type F

					Conn	ection	type A	4						Co	nnecti	on typ	es D a	nd F			
Size/ø-D1	Collar	Air c volum ra	outlet ne flow nte	Total pressure loss	re Sound power level L_W in dB ref. 10 ⁻¹² W ¹)						Air outlet volume flow p rate		Total pressure Sound power level L _W in dB r loss			ı dB ref	. 10 ⁻¹²	W ²⁾			
		Ň	/A	Δp_t	L _{WA}	Octa	ave bar	nd cent	re freq	uency i	n Hz	Ň	A	Δp_t	L _{WA}	Octa	ave bar	nd cent	re frequ	uency i	n Hz
		l/s	m³/h	Pa	dB(A)	125	250	500	1000	2000	4000	l/s	m ³ /h	Pa	dB(A)	125	250	500	1000	2000	4000
DN 355/249	0	56 111	200 400	4 15	18 24	26 33	22 29	13 21		-	ΙI	56 111	200 400	3 14	18 33	26 37	20 38	14 28	21	_	-
		167	600	36	34	38	36	34	28	16	-	167	600	33	45	48	48	40	38	30	16
DN 355/199	2	42 83 125	150 300 450	5 23 54	17 34 46	23 34 41	19 37 44	13 35 46		— 14 35	 24	42 83 125	150 300 450	5 23 58	20 38 50	26 45 53	22 40 50	13 35 46	 29 44	 21 40	 29
DN 355/199	4	28 56 83	100 200 300	7 29 68	20 41 50	28 35 43	26 40 48	14 42 49		— 19 39	— — 29	28 56 83	100 200 300	6 24 56	19 37 48	27 40 48	23 37 46	13 36 44	 27 42	— 16 38	 24
DN 500/354	0	139 250 361	500 900 1300	5 20 40	17 27 37	25 36 41	19 31 40	14 26 36		 22	111	139 250 361	500 900 1300	5 15 31	18 35 46	30 45 52	22 41 50	14 32 44	 27 41	— 16 35	 22
DN 500/314	2	111 194 278	400 700 1000	8 25 52	18 37 49	25 40 47	21 38 46	14 36 46		 24 41		111 194 278	400 700 1000	6 19 42	20 38 51	32 45 55	27 43 51	16 38 48	11 36 49	 28 45	
DN 500/314	4	83 139 194	300 500 700	12 34 69	24 41 51	32 42 49	28 43 48	22 41 51		 28 42	— 15 32	83 139 194	300 500 700	9 24 48	23 37 55	34 45 53	32 42 50	21 38 49	12 34 46	 27 42	— 10 29

¹⁾ Values apply for vertical air supply to the outlet. They are higher for outlet connection to flexible duct and 90° elbow.

2) Applies for V damper position 'open' and connection box without acoustic lining. With acoustic lining (only for connection type D) the values are lower. by approx. 2 dB(A) ref. 10⁻¹² W. The pressure loss is not influenced by the acoustic lining.

		Inser	tion loss	in dB								
Size /ø-D ₁	Collar	Connection box (for connection types D and F) without acoustic lining Octave band centre frequency in Hz										
		125	250	500	1000	2000	4000					
DN 355/199	4	4	2	4	5	3	2					
DN 355/199	2	4	2	4	5	3	2					
DN 355/249	0	4	2	4	5	4	3					
DN 500/314	4	4	2	5	5	4	3					
DN 500/314	2	4	2	4	4	3	3					
DN 500/354	0	4	2	3	3	3	2					

		Inser	tion loss	in dB									
Size /ø-D ₁	Collar	C	Connection box (for connection type D) with acoustic lining Octave band centre frequency in Hz										
		125	250	500	1000	2000	4000						
DN 355/199	4	4	2	5	8	6	7						
DN 355/199	2	4	2	5	7	6	8						
DN 355/249	0	4	2	6	7	6	7						
DN 500/314	4	4	2	6	6	5	6						
DN 500/314	2	4	2	5	6	4	5						
DN 500/354	0	4	2	5	6	4	4						

Sound power level and total pressure loss

			Connection type A		Connection types D and F						
Size / ø-D ₁	Air o volume	outlet flow rate	Total pressure loss Δp _t	Sound power level	Air volume	outlet flow rate	Total pressure loss	Sound power level			
		V _E		LWA		V _E	Δp_t	LWA			
	l/s m ³ /h		Pa	dB(A) ref. 10 ⁻¹² W	l/s	m³/h	Pa	dB(A) ref. 10 ⁻¹² W			
	111	400	17	32	111	400	11	27			
DN 355/249	139	500	28	39	139	600	25	38			
	167	600	41	44	167	800	45	46			
	83	300	10	26	83	300	8	22			
DN 355/199	125	450	21	37	125	450	17	33			
	167	600	37	45	167	600	30	41			
	181	650	10	29	181	650	8	20			
DN 500/354	250	900	20	39	250	900	15	29			
	278	1000	25	42	278	1300	30	40			
	139	500	7	23	139	500	4	14			
DN 500/314	194	700	12	32	194	700	9	23			
	278	1000	26	43	278	1000	19	33			

ADVANTAGE AIR® SWIRL OUTLETS

Features

- For high-quality diffuse indoor air flow.
- Available with square. 1) or circular face
- Stable supply air jets. 2) even at minimum volume flow rate
- Available in 2 sizes: DN 355 and DN 500, each with . 3 volume flow rate ranges (depending on collar 0, 2, or 4)
- Very large volume flow rate range, which enables a uniform ceiling design due to the use of one outlet size within a room.
- Discharge height from 2.4 to 4.5 m.
- Maximum temperature difference between supply air and indoor air: -12 K when cooling, +5 K when heating (+10 K up to 3 m ceiling height)
- Low sound power level and pressure loss.
- Installation free-hanging from the ceiling, above open grid ceilings, or in closed ceilings
- Outlet element easy to mount and demount from the room
- Box for connection type F is stackable, i.e. low transport and storage volume
- Outlet element made from powder-coated sheet metal, connection box made from Sendzimir galvanized sheet metal
- Segment cover discs (optional) enable to adapt the air discharge to the room layout (3-way discharge, 2-way discharge symmetric or asymmetric); these discs can be turned any time upon outlet installation

Features

Tender text

..... units

SWIRL outlet for high-quality indoor air flow at minimal temperature gradients in the occupied zone, consisting of:

 low-height outlet element with spigot, specially shaped face, SWIRL vanes – vane underside flush with surround-ing outlet face – and central fastening screw with cap; outlet face is round or square

 optional V. collars to increase the range of volume flow rates

 optional segment cover discs for 3-way discharge or 2-way symmetric or asymmetric discharge 2)

 optional aluminium reducer (connection type A) with lateral suspension brackets and screw nut for central fastening of outlet

 optional connection box in flat design with screw nut for central fastening of outlet, with lateral suspension brackets and connection spigot, box design:

□ as connection type D for SWIRL outlet with round or square face,

SWIRL OUTLETS Type code and tender text

_/1 = for 3-way discharge _/2 = for 2-way symmetric discharge

Connection type

- = no connection piece (only discharge element)
- = reducer (connection type A)
- D = connection box (connection type D), external sleeve
- F = connection box (connection type F), for square face

Damper

O A

- O = no volume flow damper
- R = with volume flow damper adjustable from room

Insulation

- O = without acoustic lining
- I = with acoustic lining

Surface finish

- 9010 = face painted to RAL9010, semi-matt
- = face painted to RAL

Volume flow rate factor for segment cover discs

		Segment cover discs (optional)												
	0/1	0/1 0/2 0/3 2/1 2/2 2/3 4/1 4/2 4/3												
DN 355	0.83	0.68	0.64	0.85	0.70	0.66	0.89	0.75	0.68					
DN 500	0.85	0.68	0.64	0.87	0.70	0.66	0.88	0.73	0.68					

optionally fitted with V. damper adjustable from room side and/or acoustic lining.

□ or as connection type F for SWIRL outlet with square face, optionally fitted with V. damper adjustable from room side.

Materials:

SWIRL outlet made from sheet metal powder-coated to RAL 9010 3).

Reducer made from aluminium.

Connection box made from galvanized sheet metal.

Make: KRANTZ KOMPONENTEN Type: RA-N3 – __ – DN ___ / __ / __ – __

Subject to technical alteration.

- 1) Square face with 90° turn-up (12 mm) for square tile ceilings on enquiry
- The segment cover discs can be turned so as to adapt the air discharge direction to the room layout
- 3) Other colour on enquiry

SUPPLY AIR GRILLES

SELECTION OF SUPPLY GRILLES AND REGISTERS

- The performance data which follows permits quick, easy, and accurate selection of supply grilles and registers.
- Two groups of data are required for selection.
- Inherently required by the structural and room use considerations.
- The required performance characteristics of the supply outlets.
- Consider first the spaces which are to be conditioned and their effects upon outlet selections.
- 1. m3/s The air volume to be delivered to each space is determined by overall system design, and the m3/s per outlet is determined by the number of outlets which supply each space.
- 2. NC Level The permissible sound level in each space may be specified by the owner or the architect, or it may be determined as an engineering design goal. Figure 1 contains an abbreviated list of design goals for air conditioning sound control in common occupancies.
- 3. Throw Requirement The required throw is determined from the building plan. Often the throw requirement will be the distance from the outlet to the opposite wall. Sometimes it will be the distance from the outlet to the intersection of its air system with air being delivered from another supply outlet.
- Other items to be considered are the spread requirement, permissible drop, and acceptable pressure drop.

- The air stream should spread sufficiently so that the wall or space at the end of the throw is blanketed.
- The drop of the air stream should not be so great that it is within 1.5m of the floor at the end of the throw.
- Finally, the allowance in the design of the system for outlet pressure loss should not be exceeded.
- After the design requirements air flow, NC level, throw spread, and drop requirements are known, the outlet can be selected

Selection of Grilles and Registers -19mm Louvers

• The basic selection data are given in the Tables to follow for grilles and registers having louvers on a 19mm spacing.

- For each listed air volume, the static pressure drop and two values of throw are given for each grille area factor.
- The minimum throw is the distance the air will travel to a terminal velocity of 0.64m1s; the maximum throw is the distance of air travel to a terminal velocity of 0.41m1s.

• For each m3/s and the grille size, selection data are given at three spread angles -0°, $22\frac{1}{2}^{\circ}$ and 45° .

• NC level is coded in 5 db increments for each m3/s, spread angle, and area factor in the table.

SUPPLY AIR GRILLES

Details

TABLE 5 - RECOMMENDED NCLEVEL DESIGN GOALS

NC RANGE	COMMUN TEL.	NICATION VOICE	TYPICAL APPLICATION
20-25	EXCEL	9.1-15.2m	CHURCH SANCTUARY, CONCERT & OPERA HALLS, SOUND REPRODUCTION STUDIOS.
25-30	EXCEL	6.0-12.1m	LEGITIMATE THETERS, BOARD ROOMS.
30-35	GOOD	3.0-9.1m	PRIVATE OFFICE, BALL ROOMS, MOVIE THEATERS.
35=40	FAIR	1.8-3.6m	PUBLIC LIBRARIES, BUILDING LOBBIES, GENERAL OFFICE.
40-45	FAIR	1.2 - 2.7m	HALLS & CORRIDORS, CAFETERIAS.
45-50	POOR	0.9-1.8m	SUPERMARKETS, DEPARTMENT STORES, RESTAURANT KITCHENS.
OVER 50	VERY POOR	0.3-0.6m	MANUFACTURING AREAS.

- The area factor shown at the top of each column is the key to actual grille-size selection.
- The Grille Sizes shown are not the only grilles which could be selected.
- Complete size selection is given, in Tables 6, 7 & 8 to follow, which relates grille height and grille width to the area factor.
- Selecting a register requires that the effects of dampers on grille performance be considered.
- Throw, spread, and drop are not affected by the dampers of a register - if the damper is wide open - but the pressure requirement and the sound level generated by a register are different from those of a grille only.
- The effects of the damper on these performance characteristics are shown in Table 6 to follow.
- To obtain the NC level of a register add the "NC addition" factor to the NC level of the grille as determined from Tables 6 & 9 to follow.

- To obtain the static pressure loss of the register, multiply the grille static pressure by the "Ps multiplier" of the damper.
- Note these two factors vary with grille width.

Drop

- The drop of a cooled air stream is shown in Table 7. This is the vertical distance which the air will have dropped as it travels across the room and slows to a velocity of 0.6mJs.
- Note that, at a constant air flow, the drop increases as the grille area factor increases.
- This occurs because the air velocity at the grille face decreases as the grille area increases.
- On the other hand, it must be realized that the further the air travels - that is: the longer the throw - the greater the drop becomes.
- For this reason, drop increases as air flow is increased if the grille size and spread angle are kept constant.
- The spread angle setting affects all of the performance characteristics of a grille.
- The following general rules can be used to estimate the spread:
- **1.** For 0° spread angle, the total spread of the air stream is one-third of the throw.
- **2.** For 22½° spread angle, the total spread of the air stream is about 45 percent of the throw.
- **3.** For 45° spread angle, the total spread of the air stream is 1.5 times the throw.
- These values are the total spread of the air stream, but they do not consider grille width which should be added to the spread estimated above.

SUPPLY AIR GRILLES

Details

If three grilles serve the space, determine the difference between the combined NY level for the first two grilles and the NC level of the third grille. Determine the NC addition as above, and add this to the combined NC level of the first two units. If the difference between NC levels of two grilles is 10 db or more, the sound generated by the quieter grille will not affect the space NC.

TABLE 6 - NC AND STATIC PRESSURE FACTORS FOR REGISTERS (OPEN DAMPER)

GRILLE WIDTH	100	125	150- 170	200- 250	250- 300	300- 350	355 - 450	450- 550	550- 600	600- 700	700- 850	850- 1050	1050- 1200
NC Addition (1)	12	11	10	9	8	7	6	5	5	4	4	4	3
PS Multiplier (2)	2.5	2.4	2.2	2.0	1_9	1.8	1.7	1.6	1.5	1.5	1.4	1.3	1.2

NOTES: (1) NC Addition plus grille NC equals register NC level.
 (2) Ps Multiplier times grille static pressure equals register static pressure

TABLE 7 - DROP OF COOLED SUPPLY AIR

AREA FACTOR	0,1	15	0.1	25	0.5		1		2		3		4	
SPREAD ANGLE	0°	45°	0°	45°	0°	45°	0°	45°	0°	45°	0°	45°	0°	45°
m3/s														
0.035 0.047 0.07	1.21 1.37 1.52	0.61 0.61 0.80	1.37 1.52 1.68	0.80 0.80 0.80	1.52 1.68 1.83	0.80 0.80 0.91	1.83 1.98	0.91 0.91						
0.9 0.14 0.25	1.68	0.8	1.83 1.98	0.91 0.91	1.98 2.29 2.60	1.07 1.07 1.22	2.29 2.59 2.90	1.07 1.22 1.40	2.44 2.74 3.20	1.22 1.40 1.52	3.05 3.35	1.52 1.68	3.66	1.68
0.35 0.5 0.7					2.9	1.4	3.20 3.66 3.96	$ \begin{array}{r} 1.52 \\ 1.68 \\ 1.98 \end{array} $	3.5 3.96 4.57	1.68 1.98 2.13	3.81 4.27 4.72	1.83 1.98 2.28	3.96 4.42 5.02	1.98 2.13 2.44
0.95 1.2 1.5									4.88 5.18 5.64	2.44 2.59 2.74	5.18 5.48 5.94	2.59 2.74 2.89	5.48 5.79 6.25	2.59 2.89 3.05

• For larger spaces and specific room absorption conditions, a calculation using sound power level data is required.

• Closing the damper of a register results in:

• The restriction of the air flow, thereby increasing the pressure drop and decreasing the air flow.

• The damper generating sound - increases the NC level.

• For example a damper closed sufficiently to double the pressure loss of a register (pressure ratio of 2) causes and NC increase of about 7 db. (As a rule of thumb - and for general reference only - it can be assumed that closing an opposed blade damper to an effective opening ratio of 70 percent doubles the pressure loss of the damper outlet combination. Closing the damper to an effective opening ratio of fifty percent increases the pressure loss to 4-times the grille-open damper loss.)
ADVANTAGE AIR®

SUPPLY AIR GRILLES

Details

Combining Sound Sources

- The NC data for registers and grilles, given in tables to follow, contain an allowance for the sound adsorbing properties of the average room and its contents.
- This absorption is assumed to be 8 db.
- For relatively small spaces about 73.5 sq m. or less of floor area and ceiling height of 3.0m or less the following simplified method for estimating NC level produced by combinations of supply and return registers and grilles can be used:
- 1. Determine the difference in NC level between the grilles or registers having the highest NC and the second highest NC level.
- **2.** From table 9 to follow determine the number of decibels to be added to the NC level of the grille having highest NC level. This sum is the combined NC level generated by the two grilles or registers.

GRILLE WIDTH	100	125	150	200	250	300	350	400	450	500	550	600	650	700	750	800	1000	1100	1200
100 125 150	1.52 2.03 2.29	2.54 3.05	3.81																
200 250 300	3.30 4.32 5.08	4.32 5.33 6.60	5.33 6.60 8.13	7.37 9.14 11.18	11.68 14.22	17.27													
350 400 450	6.10 6.86 7.87	7.87 8.89 10.16	9.65 11.18 12.45	13.21 15.24 17.27	16.76 19.30 21.18	20.57 23.62 26.92	34.38 27.94 31.24	31.75 36.07	40.64										
500 550 600	8.64 9.65 10.41	11.43 12.45 13.72	13.97 15.49 16.76	19.30 21.08 23.11	24.38 27.43 29.46	29.72 1.29 35.81	34.80 1.50 41.91	40.64 1.75 48.26	45.72 1.95 54.61	50.80 2.20 60.96	2.40 67.31	73.66							
650 700 750	11.43 12.70 13.97	14.73 16.00 17.27	18.29 19.81 21.08	25.15 27.18 29.21	32.00 34.54 37.08	39.37 41.91 44.45	45.72 49.53 53.34	53.34 57.15 60.96	59.69 64.77 68.58	66.04 71.12 77.47	73.66 78.74 85.09	80.01 86.36 92.71	87.63 93.98 100.33	101.60 109.22	116.84				
800 1000 1100	16.61 19.05 20.30	21.59 24.13 26.67	21.59 24.13 26.67	25.40 29.21 31.75	35.05 39.37 43.18	44,45 49,53 53,34	54.61 60.96 66.04	63.50 71.12 78.74	73.66 81.28 90.17	82.55 92.71 102.87	92.71 104.14 114.30	101.60 114.30 127.00	111.76 124.46 137.16	121.92 134.62 149.86	139.70 157.48 172.72	170.18 187.96 208.28	210.82 231.14	246.38	
1200 1300 1400 1500	22.86 25.40 26.67 27.94	29.21 30.48 33.02 35.56	34.29 38.10 40.64 43.18	46.99 52.07 55.88 59.69	59.69 64.77 69.85 74.93	72.39 77.47 83.82 90.17	86.36 91.44 96.52 101.60	99.06 105.41 111.76 119.38	111.76 119.38 127.00 137.16	124.46 134.62 142.24 152.40	137.16 147.32 157.48 167.64	149.86 162.56 172.72 185.42	162.56 175.26 187.97 200.66	175.26 187.96 200.66 213.86	187.96 200.66 215.90 231.14	226.06 246.38 266.70 284.48	251.46 274.32 294.64 317.50	279.40 304.80 325.12 347.98	304.80 330.20 355.60 381.00

TABLE 8 AREA FACTORS, FOR SELECTION OF SUPPLY GRILLES - 19mm, SD AND DD

SUPPLY AIR GRILLES

Details

TABLE 9 - NC ADDITION FOR COMBINING EFFECTS OF SOUND SOURCES

DEIFFERENCE BETWEEN TWO LEVELS TO BE COMBINED	0	1	2	4	6	9	10
NUMBER TO BE ADDED TO HIGHER LEVEL TO OBTAIN COMBINED LEVEL	3	2.5	2	1.5	1	0.5	0

Selection of Grilles and Registers - 19mm Blade Spacing

- Grilles and registers having louvers (blades) on 19mm spacing are selected in a similar manner.
- The structural and room-use factors, the air volume, and the throw, spread drop and NC
 requirements must be considered in the same way as with other grilles and registers.
- For each listed air volume, the static pressure and two values of throw are given.
- The minimum throw is the distance the air will travel to a terminal velocity of 0.64m/2; the maximum throw is the distance of air travel to a terminal velocity of 0.41m/s.
- Selection data are given at each of three spread angles 0°, 221/2°, and 45° and for NC level in 5 db increments.
- The area factor shown at the top of each column permits flexibility in grille-size selection

SUPPLY AIR GRILLES

Details

Note: (1) Dimensions given are for opening size into which grille will fit (i.e Normal Duct Size)
 (2) If code "OS" is entered under SPECIAL INSTRUCTIONS, then dimensions given are over flange.

SUPPLY AIR GRILLES Performance Data DD – SD

NOMIN	AL SIZE		200 x 100	0	2	250 x 100)		300 x 10 200 x 15	0	42	100 x 10 150 x 15	0		500 x 100 300 x 150		1	50 x 150 50 x 200	
	CORE AREA Ca		0.015			0.02			0.024			0.032			0.038			0.044	
	DEFLECTION	0+	22 ¹ / ₂ *	45+	0=	$22^i/_i$ *	45+	0+	22 ¹ / ₃ *	45+	0=	22 ¹ / ₁ *	45+	0+	$22^i/_i^*$	45+	0+	22 ¹ / ₂ *	45+
m³/s	Aj (m²)	0.011	0.01	0.008	0.014	0.014	0.011	0.018	0.017	0.013	0.023	0.022	0.017	0.028	0.027	0.021	0.032	0.031	0.024
0.024	Tp (Pa) THROW (m) VEL (m/s) NS dB	1.72 2.1-4.0 1.97 *	2.12 1.5-3.0 2.18 *	8.48)1.2-2.1 4.36 *	1.11 1.7-3.6 1.58 *	1.38 1.4-2.7 1.76 *	5.74 0.9-2.2 3.59 *												
0.036	Tp (Pa) THROW (m) VEL (m/s) NS dB	3.87 3-4.8 2.95 *	4.77 2.4-3.6 3.27 *	19.09 \$1.8-2.7 6.65 *	2.5 2.7 - 4.9 2.37 *	3.11 2.1-3.7 2.64 *	12.92 1.5-2.7 5.39 *	1.74 2.4-4.9 1.98 *	2.18 1.8-3.7 2.21 *	9.33 1.3-2.6 4.58 *	1.14 2.1-4.3 1.6 *	1.45 1.6-3.2 1.8 *	6.78 1.3-2.3 3.9 *						
0.047	Tp (Pa) THROW (m) VEL (m/s) NS dB	6.6 4-5.6 3.85 *	8.13 3-4.2 4.27	32.53 2.1-3 8.55	4.25 3.6-5.3 3.09 *	5.3 2.7-4.3 3.45 *	22.03 2.1-3.1 7.03 *	2.97 3.6-5 2.58 *	3.72 2.5-4.3 2.89 *	15.9 1.8-3 5.97 *	1.94 2.7-5.5 2.08 *	2.74 2.05-4.3 2.36 *	11.56 1.6-3.1 5.09 *	1.32 2.4-5.2 1.72 *	1.69 1.8-4.1 1.95 *	7.65 1.2-2.7 4.14 *			
0.060	Tp (Pa) THROW (m) VEL (m/s) NS dB	10.76 4.3=6.5 4,91 17	13.25 3.4-4.9 5.45 18		6.93 4.3=6.4 3.94 *	8.63 3.5-5 4,4 *	35.9 2.5 - 3.7 8.98 *	4.84 4-6.1 3.29 *	6.06 3-4.6 3.69 *	25.9 2.2 - 3.5 7.63 *	3.16 3.4=6.5 2.66 *	4.03 2.4-4.9 3.01 *	18.85 1.8-3.7 6.5 *	2,15 3-6.1 2,2 *	2.76 2.4-4.6 2.49 *	12.46 1.8-3.4 5.29 *	1.74 3.1-6.2 1.97 *	2.13 2.4-4.6 2.19 *	8,58 1.8-3,4 4,39
0.070	Tp (Pa) THROW (m) VEL (m/s) NS dB	14.64 4.9-6.5 5.73 23	18.04 3.7-5.5 6.36 24		9.44 4.9-7 4.6 18.4	11.75 3.7-5.5 5.14 19		6.58 4.8-7 3.84 *	8.25 3.7-7 4.3 *	35.26 2.7 8.9 *	4.3 4.2-6.7 3.11 *	5.48 3.4-5.2 3.51 *	25.65 2.3-3.7 7.59 *	2.93 4-6.7 2.56 *	3.76 3-5.2 2.9 *	16.96 2-3.8 6.17 *	2.36 3.7-6.8 2.3 *	2.9 2.7-5.2 2.55 *	11.68 2.1-3.7 5.12 *
0.083	Tp (Pa) THROW (m) VEL (m/s) NS dB	20.58 5.2-7.6 6.8 28	25.36 4-5.8 7.55 29		13.27 5.2-7.3 5.46 19	16.52 4-5.3 6.09 21		9.25 5-7.2 4.56 *	11.6 4-5.4 5.1 *		6.04 4-7.2 3.68 *	7.71 3.6-5.5 4.16 *	36.06 2.7-4 9 *	4.12 4.2-7.2 3.04 *	5.28 3.4-5.4 3.44 *	23.85 2.4=4 7.32 *	3.32 4-7.3 2.73 *	4.07 3.1-5.4 3.02 *	16.41 2.1=4 6.07 *
0.095	Tp (Pa) THROW (m) VEL (m/s) NS dB				17.38 5.4-7.9 6.25 24	21.64 4.3-6.1 6.97 25		12.12 5.4-7.9 5.22 18	15.2 4.3-6.1 5.84 19		7.91 5.4 - 8 4.21 *	10.1 4.3-6.1 4.76 *		5.4 5.2-7.9 3.48 *	6.92 4-6 3.94 *	31.24 2.6-4.2 8.37 *	4.35 4.9-8 3.13 *	5.33 3.7-6 3.46 *	21.5 2.7=4.2 6.95 *
0.106	Tp (Pa) THROW (m) VEL (m/s) NS dB				21.64 6.1 - 8.5 6.97 29	26.94 4.5-6.7 7.78 30		15.09 5.8=8.5 5.82 23	18.93 4.5=6.7 6.52 24		9.85 5.8-8.5 4.7 16	12.58 4.5-6.7 5.31 17		6.72 5.7 - 8.4 3.88 *	8.61 4.5=6.7 4.4 *	38,89 3=4.6 9,34 *	5.42 5.5 - 8.8 3.49 *	6.64 4.2-6.8 3.86 *	26.77 3-4.5 7.75
0.118	Tp (Pa) THROW (m) VEL (m/s) NS dB				26.81 6.4-8.8 7.76 35	33.38 4.9=6.6 8.66 36		18.71 6-8.9 6.48 25	23.45 4.5-6.7 7.26 26		12.21 6-8.9 5.23 18	15.59 4.6-6.6 5.91 19		8.33 6-9 4.32 *	10.67 4.7-6.8 4.89 *		6.71 6-9 3.88 *	8.23 4.7-6.7 4.3 *	33.18 3.4-4.9 8.63 *
0.131	Tp (Pa) THROW (m) VEL (m/s) NS dB							23.05 6.7-9.5 7.19 29	28,91 5,1-7,3 8,06 30		15.05 6.4-9 5.81 21	19.21 5-7 6.57 22		10.26 6.4-9.5 4.8 17	13.15 5-7.3 5.43 23		8.27 6.7-9 4.31 *	10.14 5.2-7 4.77 *	40.89 3.7-5.1 9.58 *
0.141	Tp (Pa) THROW (m) VEL (m/s) NS dB							26.71 7-9.8 7.74 34	33.49 5.5-7.5 8.67 35		17.43 6.7-9.9 6.25 24	22.25 5.1-7.6 7.07 25		11.89 6.7-9.9 5.17 19	15.24 5-7.5 5.85 19		9.58 6.7-10 4.64 17	11.75 5.7-5 5.14 20	
0.165	Tp (Pa) THROW (m) VEL (m/s) NS dB										23.87 7-10.3 7.32 29	30.47 5.6-8.2 8.27 30		16.28 7.3 - 10.4 6.05 24	20.86 5.4-8 6.84 25		13.12 7.3-10.4 5.43 20	16.09 5.5 -8 6.01 21	
0.187	Tp (Pa) THROW (m) VEL (m/s) NS dB										39.4 8-11.3 9.4 35	39.14 6-8.5 9.37 36		26.88 8-11.3 7.77 28	26.8 6=8.5 7.76 29		21.67 8-11.3 6.97 24	20.67 6-8.6 6.81 25	
0.212	Tp (Pa) THROW (m) VEL (m/s) NS dB	N	iS = sour	ad ratin Aj =	g from s CA = effectiv	ound por core are e area of	wer daşa a in m . f throw is	assumir n m/s.	ig RA=8	dB				33.31 8.5-12 8.65 33	34.44 6.7-9 8.79 34		26.85 8.5-12 7.76 28	26.57 6.7-9 7.72 29	
0.236	Tp (Pa) THROW (m) VEL (m/s) NS dB		Throw	= dista	= Tota nce tp pe 0.5m/	al pressu oint of m 's and to	re in Pa. ax. air st 0.25m/s	ream ve	locity at					40.74 8.9=12.7 9.56 38	42.68 6.7-9.8 9.79 39		32.84 8.9-12.9 8.59 32	32.92 6.7-9.9 8.6 33	
0.261	Tp (Pa) THROW (m) VEL (m/s) NS dB																38.88 9-13.5 9.34 37	40.27 7-10.5 9.51 38	

ADVANTAGE AIR®

SUPPLY AIR GRILLES Performance Data DD – SD

NOMIN	AL SIZE	30 80	0 x 400 0 x 150		3 3 5	00 x 250 75 x 200 00 x 150		3 3 4 6	00 x 300 60 x 250 50 x 200 00 x 150)	34 57	50 x 30 20 x 25 25 x 20 00 x 15	0 0 0		400 x 300 180 x 250 500 x 200			450 x 350 525 x 300 750 x 200 750 x 200	
	CORE AREA Ca		0.01			0.08			0.09			0.11			0.12			0.16	
	DEFLECTION	0* 3	22 ¹ / ₂ *	45*	0+	22 ¹ / ₂ *	45*	0+	22 ¹ / ₁ •	45*	0+	22 ¹ / ₁ *	45+	0•	$22^{\rm i}\!/_i{\rm *}$	45•	0•	22 ¹ /;*	45*
m³/s	Aj (m ¹)	0.07 (0.064	0.03	0.045	0.04	0.019	0.054	0.048	0.022	0.062	0.056	0.026	0.071	0.064	0.03	0.093	0.083	0.038
0.070	Tp (Pa) THROW (m) VEL (m/s) NS dB	0.43 3.4=6.4 0.98 *	0.54 2.4-4.9 1.1 *	2.5 1.8-3.8 3.27 *															
0.083	Tp (Pa) THROW (m) VEL (m/s) NS dB	0.6 3.7-7.3 1.16 *	0.75 3-5.6 1.3 *	3.51 2.1-4 2.81 *	1.53 3.5-6.8 1.85 *	1.9 2.5-5.2 2.07 *	8.58 1.8-3.8 4.39 *							Aji witi Aji witi	Register 1 OBD Register	0" .73C/ .79C/	22 ¹ / A .70	(* 45° CA .53	CA
0.095	Tp (Pa) THROW (m) VEL (m/s) NS dB	0.79 4.3-8 3 1.33 *	0.99 3.5-6.2 1.49	4.6 2.5-4.3 3.21	2 4-7.6 2.12 *	2.49 3-5.8 2.36 *	11.25 2.1-4.3 5.02	1.4 3.7-7.3 1.77 *	1.74 2.7-5.5 1.98 *	7.97 2.1=4 4.23 *				Thr	ow ressure	100%	779 Str	6 of 55' iight Str 15 1.3	% of aight 05
0.106	Tp (Pa) THROW (m) VEL (m/s) NS dB	0.98 5-8.2 3 1.48 *	1.23 3.4-6.7 1.66 *	5.73 2.4 - 4.6 3.59 *	2.5 4.4 - 8.5 2.37 *	3.1 3.4-6.7 2.64 *	14 2.4-4.5 5.61 *	1.74 4-7.9 1.97 *	2.17 3-6 2.2 *	9.92 2-4.3 4.72 *	1.28 3.8-7.4 1.69 *	1.6 2.8-5.5 1.89 *	7.4 2.1-4 4.07 *	Cot	ff.	Ba	sic Formu n ³ /s=V x / V = C	lae: Nj	
0.118	Tp (Pa) THROW (m) VEL (m/s) NS dB	1.21 5.6-9 4 1.65 *	1.52 1.4-6.5 1.85 *	7.1 3-5 3.99 *	3.09 5-9 2.63 *	3.84 3.8-6.9 2.94 *	17.35 2.7-5 6.24 *	2.15 4.7-9 2.2 *	2,68 3.7-6.8 2,45 *	12.3 2.7-5 5.25 *	1.58 4.4-8.2 1.89 *	1.98 3.4-6.4 2.11 *	9.17 2.4-4.6 4.54 *						
0.131	Tp (Pa) THROW (m) VEL (m/s) NS dB	1.5 5.8-9 1.83 *	1.87 4.6-7 2.05 *	8.75 3-5.2 4.43	3.81 5.2-9 2.95 *	4.73 4-7 3.26 *	21.38 2.8-5.2 6.93 *	2.65 5-9.7 2.44 *	3.31 3.7-7.3 2.72 *	15.15 2.7-5.2 5.83 *	1.95 4-6.9 2.09 *	2.44 3.7-7 2.34 *	11.3 2.4-5.2 5.04 *	1.51 4.3-8.3 1.84 *	1.86 3.4-6.5 2.04 *	8.52 2.4-4.6 4.37 *			
0.165	Tp (Pa) THROW (m) VEL (m/s) NS dB	2.37 7.3-10.38 2.31 17	2.97 5.5-8.2 2.58 18	13.88 4=5.9 5.58 23	6.05 6.7-10.4 3.68 *	7.51 5.2-7.8 4.11 *	33.93 3.7-5.8 8.73	4.21 6.1-10.4 3.07 *	5.25 14.6-7.9 3.43 *	24.04 3.4-5.8 7.35 *	3.1 5.9-10.4 2.64 *	3.87 14.6-7.8 2.95	17.92 3-5.9 6.34	2.4 5.2-10.4 2.32	2.95 4-8 2.57	13.52 2.8-5.9 5.51	1.4 4.6-9.6 1.77 *	1.74 3.7-7.3 1.97 *	8.21 2.4-5.2 4.29 *
0.187	Tp (Pa) THROW (m) VEL (m/s) NS dB	3.05 8-11.3 2.62 20	3.82 6-8.6 2.93 21	17.82 4.3-6 6.32 26	7.77 8-11.3 4,18 16	9.65 6-8.6 4.65 17	43.58 4.3-6 9.89 22	5.41 7-11 3.48 *	6.74 5.6-8.5 3.89 *	30.88 4-6.1 8.33 *	3.98 6.7-11.3 2.99 *	4.97 5.2-8.5 3.34 *	23.02 3.7-6.1 7.19 *	3.08 6.1-11.3 2.63 *	3.79 4.6-8.5 2.92 *	17.37 3.4-6.1 6.24 *	1.8 5.1-10.3 2.01 *	2.23 4-8 2.24 *	10.54 2.7-5.8 4.86 *
0.212	Tp (Pa) THROW (m) VEL (m/s) NS dB	3.92 8.1-12 6 2.97 23	4.91 5.5-9.1 3.32 24		9.98 8.5-11.9 4.73 19	12.4 6.7-9 5.28 20		6.95 8-12 3.95 *	8.66 6-9 4.41 *	39.69 4.3-6.4 9.44 *	5.11 7.6-12 3.39 *	6.39 5.8-9.1 3.79 *	29.59 4.3-6.4 8.15 *	3.95 6.7-12 2.98 *	4.87 5.2-9 3.31 *	22.33 3.7-6.4 7.08 *	2.31 6-12 2.28 *	2.86 4.6-9 2.54 *	13.55 3.4-6.4 5.51 *
0.236	Tp (Pa) THROW (m) VEL (m/s) NS dB	4.86 8.8 -12 .56 3.3 27	6.08 6.6-10 3.7 28		12.37 8.8 - 12.6 5.27 22	15.37 6.7-10 5.87 23		8.61 8.9-12.0 4.4 17	10.73 56.7-9.7 4.91 18		6.34 8.3-12.4 3.77 *	7.92 5 6.5 -1 0 4.22 *	36.67 4.6-7.1 9.07 *	4.9 7.3-12.6 3.32 *	6.04 5.6 - 10 3.68 *	27.67 4-7 7.88 *	2.87 6.7-12.6 2.54 *	3.55 5.2-10 2.82 *	16.79 3.7-7 6.14 *
0.261	Tp (Pa) THROW (m) VEL (m/s) NS dB	5.94 9=13 3.65 30	7.44 7-10 4.09 31		15.13 9-13 5.83 24	18.79 7-10.1 6.5 25		10.53 9.1-13.1 4.86 20	13.13 17-10.1 5.43 21		7.75 9.1-13. 4.17 16	9.69 1 7-10.1 4.66 17		5.99 8.3-13.2 3.6 *	7.38 5-10.2 4.07 *	33.84 4.7=7.4 8.72 *	3.5 7.4-13.2 2.8 *	4.34 5.6-10.2 3.12 *	20.53 4.1=7.4 6.79 *
0.284	Tp (Pa) THROW (m) VEL (m/s) NS dB	7.03 9.9 -13. 87 3.97 32	8.81 7.7-10.8 4.45 33		17.91 9.6-13.8 6.34 27	22.25 7.3-10.7 7.07 28		12.47 9.9-13.8 5.29 22	15.53 87-10.7 5.91 23		9.18 9.9-14 4.54 19	11.47 7.6-10.3 5.07 20	,	7.1 8.9-13.7 3.99 *	8.74 6.8-10.8 4.43 *	40.07 5-7.7 9.48 *	4.15 8-13.8 3.05 *	5.14 6-10.6 3.4 *	24.31 4.4-7.7 7.39 *
0.331	Tp (Pa) THROW (m) VEL (m/s) NS dB	9.55 10-14.9 8 4.63 38	11.97 8-11.6 5.18 39		24.33 10.4-15 7.39 32	30.23 8-11.7 8.24 33		16.94 10.4-15 6.17 26	21.12 8-11.7 6.88 27		12.46 10.4-15 5.29 23	15.58 8-11.7 5.91 24		9.64 10.7-15 4.65 18	11.88 8.3-11.6 5.16 19		5.64 9-15 3.56 *	6.98 7-11.7 3.96 *	33.02 5.3-8.3 8.61 *
0.380	Tp (Pa) THROW (m) VEL (m/s) NS dB				32.07 11.2-16 8.48 37	39.84 8.6-12 9.46 38		22.32 11.4-16 7.08 31	27.83 .88.6-12 7.9 32	.3	16.43 11-16 6.07 27	20.53 8.6-12.3 6.79 28	,	12.7 11.4-16 5.34 22	15.65 8.6-12.4 5.93 23		7.43 10.7-16 4.08 17	9.2 8.3-12.3 4.55 18	43.52 5.8-8.9 9.88 23
0.424	Tp (Pa) THROW (m) VEL (m/s) NS dB							27.79 12-16 7.9 35	34.65 9-12.8 8.82 36		20.45 12-16 6.78 31	25.56 9.1-12.1 7.57 31	3	15.82 11.7-17 5.96 25	19.49 8.9-12.8 6.61 26		9.25 11.7-17 4.56 20	11.46 9-12.9 5.07 21	
0.473	Tp (Pn) THROW (m) VEL (m/s) NS dB							34.58 12.6-18 8.81 39	43.12 9.8-14 9.84 40		25,45 12.6-17 7.56 35	31.81 .89.9-13 8.45 36	1.8	19.68 12.5-17 6.65 28	24.25 9.9 -1 3.8 7.38 39		11.51 12.6-17. 5.08 23	14.26 8 9.9 -1 3.8 5.66 24	

ADVANTAGE AIR®

SUPPLY AIR GRILLES Type DD

- The two sets of individually adjustable louvers vertical and horizontal with or without a damper attached, allow these grilles to provide maximum flexibility of adjustments for spread and throw requirements.
- The multi directional flexibility allows for multi-directional air supply.
- They are recommended for high sidewall, bulkhead or duct mounting and can be used for heating, cooling, or ventilating applications

GENERAL SPECIFICATIONS

• All models feature two sets of individually adjustable blades - vertical and horizontal - spaced at 19mm apart, and fitted into a 32.5 or 20mm frame.

• The optional opposed blade damper is constructed using extruded aluminium blades and frame.

• The individual blades are secured by corrosion resistant star lock washers with added adjusting tension supplied by corrosion resistant spring wire.

• All models can be furnished with powder coated white finish preceded by five stage preparation process of cleaning, phosphatising and drying.

• Grilles can be supplied in natural anodised and white powder coated finishes.

• Other colours are available on request.

SUPPLY AIR GRILLES Type SD

- These models have one set of individually adjustable blades on a horizontal plane to provide maximum throw requirements or on a vertical plane (on special request) to provide maximum spread adjustment.
- They are recommended for heating, cooling, and ventilating applications, generally mounted in a high sidewall, bulkhead or duct when either spread or throw only is important.
- The grilles are provided with or without an opposed blade damper.
- The adjustable blades are spaced at 19mm, but fixed blades with 13, 21 and 26mm spacing can be offered at special request.

GENERAL SPECIFICATIONS

- All models feature one set of individually adjustable blades of extruded aluminium set in a 32.5 or 20mm extruded aluminium frame.
- An optional extra opposed blade damper is constructed of extruded aluminium blades can be supplied on request.
- All models can have a powder coated white surface finish preceded by five stage preparation process of cleaning, phosphatising and drying.
- Other colours are available on request.
- Grilles can also be supplied in natural anodised finish.

SUPPLY AIR GRILLES

Details

Note: (1) Dimensions given are for opening size into which grille will fit (i.e Normal Duct Size) (2) If code "OS" is entered under SPECIAL INSTRUCTIONS, then dimensions given are over flange

PLASTIC DIFFUSERS & GRILLES STREEMLINE RANGE ADJUSTABLE BLADE DIFFUSER KITS

FEATURES

- The SL54 are designed to fit in a standard commercial "T bar" ceiling grid
- Louvred biscuits can be adjusted to seven optimum set points using the patented locking system.
- Adjustable blade diffusers allows for airflow adjustments after installation
- Each biscuit can be located to blow in any one of four directions.
- Diffusers are quick and easy to install.
- Louvre blades remain flush with the ceiling at all times with no ugly protrusions below the ceiling.
- Aerofoil blade profile reduces air noise at the grille and improves air diffusion.
- The louvre biscuits can be removed and washed.

CONSTRUCTION

- The diffuser is manufactured from white ABS plastic.
- Plastic neck adaptors are manufactured from black ABS plastic.
- The diffuser clips are constructed from Acetal plastic.

KIT MODEL NO.	A O/all mm	B O/all mm	C Neck mm	D Neck mm	E mm	F Dia mm	G mm	H mm	l mm
SL2WS15*	334	195	280	141	75	150	160	32	na
SL2WS20*	334	195	280	141	75	200	80	32	na
SL3020*	334	334	280	280	60	200	80	32	na
SL3025*	334	334	280	280	60	250	80	32	na
SL3030*	334	334	280	280	60	300	80	32	na
SL2WL20	416	237	365	185	60	200	83	118	na
SL2WL25	416	237	365	185	60	250	83	118	na
SL2WL30	416	237	365	185	60	300	83	118	na

APPLICATIONS

 Ideal for commercial, refrigerated air conditioning, heating and ventilation applications

KIT MODEL	A O/all	B O/all	C Neck	D Neck	E	F Dia	G	н	I
NO.	mm	mm	mm	mm	mm	mm	mm	mm	mm
SL4020*	416	416	360	360	60	200	80	32	97
SL4025*	416	416	360	360	60	250	80	32	97
SL4030*	416	416	360	360	60	300	80	32	97
SL4030	416	416	360	360	60	300	60	60	na
SL4035	416	416	360	360	60	350	60	60	na
SL4040	416	416	360	360	60	400	60	60	na
SL5440	596	416	540	360	60	400	100	16	75
SL5445	596	416	540	360	60	450	100	16	na
SL5450	596	416	540	360	60	500	100	16	na

PLASTIC DIFFUSERS & GRILLES STREEMLINE RANGE

ADJUSTABLE BLADE DIFFUSER KITS PERFORMANCE CHARACTERISTICS

SL-40 (360x360 Streemline diffuser - 4 way blow) 160 N R.35 8825 60 11 UF6 (P3) NR2 Ê 20 16 6 8 400 600 700 Air Quantity (ii tree/second)

Throws vary between 1 to 5 meters up to 120 I/I and +5 meters for all air quantities above 120 I/I.

Throws vary between 1 to 5 meters up to 2001/s and +5 meters for all air quantities above 2001/s.

 S5 - Blade setting 5 S4 - Blade setting 4 S3 - Blade setting 3 S2 - Blade setting 2 S1 - Blade fully closed 	
NR - Noise Rating	

Throw is vary between 1 to 5 m eters up to 55 l/s and +5 m eters for all air quantities above 55 l/s.

SL-2WL (360x180 Streemline diffuser - 2 way blow)

PLASTIC DIFFUSERS & GRILLES STREEMLINE RANGE FIXED BLADE DIFFUSER KITS

FEATURES

- The SL54 are designed to fit in a standard commercial "T bar" ceiling grid.
- Louvred biscuits are moulded in one piece and the pitch of the blades is fixed.
- Diffusers are quick and easy to install.
- Louvre blades remain flush with the ceiling at all times with no ugly protrusions below the ceiling.
- Aerofoil blade profile reduces air noise at the grille and improves air diffusion.
- Each biscuit can be located to blow in any one of four directions.
- The louvre biscuits can be removed and washed.
- Fixed blade Streemline diffusers are less expensive than adjustable blade diffusers.

CONSTRUCTION

- The diffuser is manufactured from white ABS plastic.
- Plastic neck adaptors are manufactured from black ABS plastic.

• The diffuser clips are constructed from Acetal plastic.

APPLICATIONS

 Ideal for commercial, refrigerated air conditioning, heating and ventilation applications

DIMENSIONS

DIFFUSER

NECK ADAPTOR

										KIT	Δ 1	I B	C	D	I E	I F	G	н	
KIT MODEL NO.	A O/all mm	B O/all mm	C Neck mm	D Neck mm	E mm	F Dia mm	G mm	H mm	l mm	MODEL NO.	O/all mm	0/all mm	Neck mm	Neck mm	mm	Dia mm	mm	mm	mm
SLF2WS15*	334	195	280	141	75	150	160	32	na	SLF4020*	416	416	360	360	60	200	80	32	97
SLF2WS20*	334	195	280	141	75	200	80	32	na	SLF4025*	416	416	360	360	60	250	80	32	97
SLF3020*	334	334	280	280	60	200	80	32	na	SLF4030*	416	416	360	360	60	300	80	32	97
SI E3025*	334	334	280	280	60	250	80	32	na	SLF4030	416	416	360	360	60	300	60	60	na
021 0020			200			200			na	SLF4035	416	416	360	360	60	350	60	60	na
SLF3030*	334	334	280	280	60	300	80	32	na	SLF4040	416	416	360	360	60	400	60	60	na
SLF2WL20	416	237	365	185	60	200	83	118	na	SLF5440	596	416	540	360	60	400	100	16	75
SLF2WL25	416	237	365	185	60	250	83	118	na	SI E5445	596	416	540	360	60	450	100	16	na
SLE 2WL 30	416	237	365	185	60	300	83	118	na	01.55450	500	.10	540	0.00			100	.0	. 104
00 20000	1 410	207	505	100	00	000	00	110	na	SLF5450	596	416	540	360	1 60	ຼວປປ	100	16	ria

PLASTIC DIFFUSERS & GRILLES STREEMLINE FIXED BLADE DIFFUSER PERFORMANCE CHARACTERISTICS

PLASTIC DIFFUSERS & GRILLES STREEMLINE RANGE EGGCRATE GRILLE KITS

FEATURES

- The SL54 are designed to fit in a standard commercial "T bar" ceiling grid.
- Eggcrate biscuits are moulded in one piece.
- Grilles are quick and easy to install.
- The eggcrate biscuits can be removed and washed.
- Fixed blade Streemline Eggcrate grilles are less expensive than aluminium eggcrate grilles and easier to remove and clean.

CONSTRUCTION

- The diffuser is manufactured from white ABS plastic.
- Plastic neck adaptors are manufactured from black ABS plastic.
- The diffuser clips are constructed from Acetal plastic.

KIT MODEL NO	A	B	C	D	E	F	G	н	I
MODEL NO.	mm	mm	mm	mm	mm	mm	mm	mm	mm
SLE2WS15*	334	195	280	141	75	150	160	32	na
SLE2WS20*	334	195	280	141	75	200	80	32	na
SLE3020*	334	334	280	280	60	200	80	32	na
SLE3025*	334	334	280	280	60	250	80	32	na
SLE3030*	334	334	280	280	60	300	80	32	na
SLE 2WL 20	416	237	365	185	60	200	83	118	na
SLE 2WL25	416	237	365	185	60	250	83	118	na
SL2EWL30	416	237	365	185	60	300	83	118	na

APPLICATIONS

 Ideal for commercial, refrigerated air conditioning, heating and ventilation applications

NECK ADAPTOR

KIT MODEL	A O/all	B O/all	C Neck	D Neck	E	F Dia	G	н	I
NO.	mm	mm	mm	mm	mm	mm	mm	mm	mm
SLE4020*	416	416	360	360	60	200	80	32	97
SLE4025*	416	416	360	360	60	250	80	32	97
SLE4030*	416	416	360	360	60	300	80	32	97
SLE4030	416	416	360	360	60	300	60	60	na
SLE4035	416	416	360	360	60	350	60	60	na
SLE4040	416	416	360	360	60	400	60	60	na
SLE5440	596	416	540	360	60	400	100	16	75
SLE5445	596	416	540	360	60	450	100	16	na
SLE5450	596	416	540	360	60	500	100	16	na

PLASTIC DIFFUSERS & GRILLES STREEMLINE RANGE SSRV - STREEMLINE SECURITY RELIEF VENTS

FEATURES

• Rectangular grille with six removable eggcrate cores and a vision proof barometric damper behind the grille.

The barometric damper will open if the pressure on the room side of the grille is greater than the pressure in the ceiling void.
Supplied with a separate metal stop to prevent the damper from blowing open.
Fitted with rubber seals to prevent noise when damper closes.

CONSTRUCTION

• These relief vents are constructed from white plastic and have a black, fluted, plastic barometric damper behind

PERFORMANCE

• Air flow through the grille will be determined by the pressure in the room and room leakage. Maximum air flow through a single grille should not exceed 390 l/s if air noise through the grille is to be avoided.

APPLICATIONS

• Security relief vents are designed to be installed in the ceiling of areas which are evaporative cooled. Installation of these grilles provides a relief path for the evaporative system and eliminates the need to open windows and doors.

MODEL NO.	A O/all mm	B O/all mm	C Neckm m	D Neck mm	E Open mm	F mm
SSRV	416	596	540	360	150	60

PLASTIC DIFFUSERS & GRILLES SILHOUETTE DIFFUSERS

ST-30 4 WAY CORE

ST-30 3 WAY CORE

FEATURES

- 360x360 Tee Bars are designed to drop in a standard commercial "T bar" ceiling grid. It can also be flush mounted in gyprock ceilings.
- Available in 2 sizes: ·280x280
- .360x360 (Tee Bar)
- · Easy to clean removable cores
- Alternative cores are available to suit the following blow configuration: ·280x280: 4 and 3 way blow ·360x360 (Tee Bar): 4 way blow
- Aesthetically pleasing louvre design
- · Lightweight rigid construction
- 280x280 diffusers comes with spring loaded clips for quick and easy installation
- 360x360 Tee Bar accepts all standard Advantage Air 360x360 neck adaptors and plastic cushion head adaptors.
- 280x280 silhouette diffuser accepts all standard Advantage Air 280x280 neck adaptors and plastic cushion head adaptors.

CONSTRUCTION

· Constructed from blended engineering plastics

APPLICATIONS

• Ideal for commercial reverse cycle air conditioning, heating and ventilation applications

ST-60 METRIC TEEBAR

SILHOUETTE DIFFUSER WITH CUSHION HEAD ADAPTOR

OPTIONAL EXTRAS

- · Plastic neck adaptors
- Plastic cushion head adaptors
- Sheet metal cushion head adaptors

- Tabs on Tee Bar diffusers for installations to imperial ceiling grids.

DIMENSIONS

ST-60 with standard Advantage air neck adaptor

ST-30 with standard Advantage air neck adaptor

ST-30 with Advantage air plastic cushion head adapto

ST-60 with Advantage air plastic cushion head adaptor

- Steel clips for Tee Bar diffusers
- Sheet metal OBD dampers

Core Area (m²)

PLASTIC DIFFUSERS & GRILLES SILHOUETTE DIFFUSERS PERFORMANCE CHART

SILHOUTTE DIFFUSERS TEEBAR (360X360) & (280X280) DIFFUSER

40.02g ŝ 100 NOTES: NC values are based on room absorption of 8db re 10⁻¹²watts. NC 40 50 ર્ક્ Total Pressure (Pa) 30 NC 30 20 NC 20 NC 10 15 10 30 40 50 60 80 100 150 200 300 400 500 700 1000 Air Quantity (litres / second)

SQUARE CEILING DIFFUSERS

SA.CAT.Rev.31.03.2014

PLASTIC DIFFUSERS & GRILLES PLASTIC CUSHION HEAD

FEATURES

- Low cost
- Lightweight rigid construction
- Provides even airflow across entire diffuser face
- · Suitable for restricted ceiling voids
- Curved design allows easy ceiling installation
- · Internal insulation reduces risk of
- condensation and provides excellent acoustic properties
- Integral hanging points

CONSTRUCTION

 Constructed from ABS blended engineering plastics

APPLICATIONS

- · Suitable for use on:
- Streemline diffusers
- Silhouette diffusers
- Spigot sizes available 200/250/300 diameter

OPTIONAL EXTRAS

• Can be internally insulated with a 'closed cell' polyethylene adhesive material or a 25mm (black scrim or perforated foil) fibreglass

Manual or Motorised inlet damper

PLASTIC DIFFUSERS & GRILLES ROUND DIFFUSER

FEATURES

- Available in 4 different sizes:
- 150 dia
- 200 dia
- 250 dia
- 300 dia
- Stylish design
- · Easily adjusted diffuser opening
- Low cost

- Lightweight rigid construction
- Easy to clean.
- Scratch resistant surface.
- Quiet.
- Snap action clips for fast and easy
- installation.
- Tapered neck for easy duct connection

CONSTRUCTION

• These outlets are injection moulded from white ABS plastic and have integrated spring loaded clips

APPLICATIONS

• Ideal for commercial reverse cycle air-conditioning, heating and ventilation applications.

GRILLE SIZE	A NOMINAL NECK SIZE (mm)	B FLANGE SIZE (mm)	C HEIGHT (mm)	HOLE DIAMETER (mm)
150 DIA	145	268	93	231
200 DIA	200	328	100	284
250 DIA	250	390	102	356
300 DIA	300	436	102	398

PLASTIC DIFFUSERS & GRILLES ROUND DIFFUESER PERFORMANCE DATA

200 DIA SUNLINE DIFFUSER

PLASTIC DIFFUSERS & GRILLES SWIVEL JET DIFFUSERS

FEATURES

• Unique swivel core allows the occupant to adjust the direction of airflow through 360° to suit furniture layouts etc.

- Easy to clean.
- Quiet.
- Damper is easily adjusted from the face of the grille and will not blow closed.
- Snap action clips for fast installation.
- Tapered neck for easy duct connection

CONSTRUCTION

• These outlets are injection moulded from white A.B.S plastic and have integrated spring loaded Clips

APPLICATIONS

• These outlets are ideal as heating, supply air ceiling diffusers.

• Can also be used for en-suite exhaust, bulkhead air conditioning / heating or as a reverse cycle jet diffuser.

MODEL NO.	A O/all	B O/all	C Neck
SJ15	262	100	148
SJ20	312	103	198

PLASTIC DIFFUSERS & GRILLES

SWIVEL JET DIFFUSERS - PERFORMANCE DATA

PLASTIC DIFFUSERS & GRILLES BABY LINEAR GRILLE

FEATURES

- One piece construction of the diffuser eliminates unsightly joins.
- Attractive moulded diffuser is scratch resistant and will not corrode or deteriorate with age.
- Fast, easy installation.
- · Significantly lower cost than aluminium diffusers.
- Will fit commercial ceiling grids.
- Easy to clean removable grille frame.
- Light weight ridged construction.
- Standard ceiling white.
- Paintable.
- Boots available in 200 DIA and 250 DIA connections.

CONSTRUCTION

- The diffuser is moulded from white ABS plastic.
- The boot/adaptor black ABS plastic.
- The frame can be supplied separately for bulkhead, wall and door installations.
- The boot clips are constructed from Acetal plastic.

APPLICATIONS

- Ideal for light commercial reverse cycle air conditioning systems.
- Suitable for ceiling, commercial T-Bar, bulkhead, and wall
- Suggested cut out 90mm x 570mm for boots. Grille only installations will require a smaller cut-out hole for grille neck.

PLASTIC DIFFUSERS & GRILLES

BABY LINEAR GRILLE PERFORMANCE

PLASTIC DIFFUSERS & GRILLES LINEAR ELITE DIFFUSER

Clips supplied separately. Please specify.

FEATURES

- Two 25mm slots provide high flow rates with low noise levels.
- One piece construction of the diffuser eliminates unsightly joins.
- Attractive moulded diffuser is scratch resistant and will not corrode or deteriorate with age.
- Fast, easy installation.
- Two deflectors per slot enables 180 degree throw pattern.
- Significantly lower cost than aluminium diffusers.
- Will fit both metric and imperial commercial ceiling grids.

CONSTRUCTION

- The diffuser is constructed from white ABS plastic.
- The boot, adaptor and deflectors are all constructed from black plastic.
- The internal insulation for the boot is moulded polystyrene.
- The boot is supplied with a side central hole for the propriety spigot.

APPLICATIONS

- · Reverse cycle commercial air conditioning.
- Heating.
- Suggested cut out 118mm x 1175mm.

PLASTIC DIFFUSERS & GRILLES LINEAR ELITE DIFFUSER PERFORMANCE CHARACTERISTICS

300 400 500

150 200

Air Quantity (litres/second)

700

5 3

PLASTIC DIFFUSERS & GRILLES AIRLINE DIFFUSER

Features

- · Stylishly presented 4 slot Linear grille
- · One piece face construction no visible joins
- · Scratch resistant, and will not corrode
- · Suitable for airflow of up to 220 l/s
- · 360 degree directable airflow
- · Easy installation

Construction

- · Grille White ABS Plastic
- · Boot White ABS Plastic

Applications

· Commercial Reverse Cycle Air-conditioning systems

Dimensions

- Exact Neck Dimensions: 532mm x 196mm
- Height (including spigot, but not duct): 140mm

METAL RETURN AIR GRILLES

STOCK RANGE

RETURN AIR FILTER AND FRAME

MODEL	SIZE
NO.	ММ
BRAG595/595	595*595
BRAG1195/595	1195*595

CUSTOM RANGE

Type-RA

• These grilles feature light weight extruded aluminium with or without damper attached. The standard grilles are available with fixed horizontal blades spaced at 21mm apart.

GENERAL SPECIFICATIONS

- Different spacing can be offered as a special request.
- The frame is constructed of 1.3mm thickness extruded aluminium with curved fins of extruded aluminium of1.2 to 1.6mm thickness.
- The damper is constructed from extruded aluminium blades and frame.
- Grille can be furnished with powder coated white finish preceded by a five stage preparation process of cleaning, phosphatising and drying.
- Other colours are available on request.
- Grilles can also be supplied as natural anodised.
- For outside weatherproof applications the Return Air Ribbed Blade (RARB) can be offered. This type is particularly suited to grilles for console air conditioners

METAL RETURN AIR GRILLES Details

Note: (1) Dimensions given are for over flange size (2) If 13mm, 19mm, 26mm Blade Spacing required, enter under SPECIAL INSTRUCTIONS

METAL RETURN AIR GRILLES Type-RA

SELECTION DATA

PLASTIC RETURN AIR GRILLES PURTECH RETURN AIR GRILLE

FEATURES

- Low cost.
- Scratch resistant.
- Removable core for easy cleaning.
- Complete with leak proof return air box.
- Two return air duct connections to ensure even air distribution across grille and filter.
- Electrostatic filters provides 14% more efficiency than standard filters.
- Accepts standard Advantage Air neck adaptors for quick connection.
- Close tolerances ensure the grille does not whistle.
- Attractive elongated eggcrate core reduces pressure drop across core.
- Hidden mechanical latches ensures the core will not drop.
- Plastic box construction reduces risk of condensation and corrosion.
- Three sizes 1200x600, 900x400 and 750x550.
- 1200x600 model will drop into metric ceiling T-bar system.
- Light weight ridged construction.
- Standard ceiling white.
- Paintable.

CONSTRUCTION

- Grille, box and adaptors are all blended engineering plastics.
- Electrostatic filters are a special combination of materials layered to provide the maximum static charge to capture dust particles.
- Can be internally insulated using 6 mm closed cell polyethylene adhesive material

APPLICATIONS

- · Ideal for small commercial ducted
- Can be used without filters for air transfer and ventilation systems.

OPTIONAL EXTRAS

- Optional fresh air filter/connection.
- Optional dirty filter alarm to alert owner when filter clean is overdue.
- Optional internal insulation for high humidity climates.
- Optional double layer or 3 layer filter.

MODEL NO.	A O/all Length mm	B O/all Width mm	C mm	D mm	E R/A Connection mm	F F/A Connection mm	Max O/all Height with A daptors mm	Effective face area M ²
PUR1260	1195	595	155	60	200 to 400	200 to 300	275	0.529
PUR9040	973	466	155	60	200 to 400	150 to 200	348	0.309
PUR7555	800	595	160	18	200 to 550	150 to 200	281	0.337

PLASTIC RETURN AIR GRILLES PURTECH RETURN AIR GRILLE PERFORMANCE DATA

PURTECH RETURN AIR GRILLE WITH 3 LAYER ELECTROSTATIC FILTER

PLASTIC RETURN AIR GRILLES SLIMLINE RETURN AIR GRILLE

FEATURES

- Low cost
- · Front loading and removal of filter (optional)
- · Light weight rigid plastic construction
- Scratch resistant
- · Suitable for ceiling installations

• All plastic construction reduces risk of condensation and corrosion.

CONSTRUCTION

• Grille frame is constructed from ABS blended engineering plastics

• Filter frame and media are constructed from Polypropylene plastic to provide maximum static charge to capture dust particles

APPLICATIONS

Ideal for small commercial ducted gas heating and reverse cycle return air systems.
Can be used without filters for air transfer and ventilation systems

OPTIONAL EXTRAS

- Removable electrostatic filter
- · Sheet metal installation frame
- Sheet metal box for ceiling return air applications.
- Suitable for connection to standard

Advantage Air neck adaptors for ducting.

PLASTIC RETURN AIR GRILLES

SLIMLINE PERFORMANCE CHART

AIR QUANTITY (1/s)

HONEYCOMB FILTER TEST SPECIFICATIONS				
TEST METHOD	ASHRAE STANDARD 52.1-1992			
TEST DUST	ASHRAE			
INITIAL RESISTANCE @ 1.02m/s	10 Pa			
FINAL RESISTANCE @ 1.02m/s	250 Pa			
AVERAGE ATMOSPHERIC DUST SPOT EFFICIENCY	< 20%			
DUST HOLDING CAPACITY	237g/m^2			
AVERAGE ARRESTANCE	54.00%			

LEGEND

NR - Noise Rating

NB. TEST DATA IS BASED ON THE (GRILLE FRAME + FILTER) CONFIGURATION

DOOR GRILLES TYPE-DG

STOCK RANGE

MODEL NO	NOMINAL SIZE mm
DRG300	300*300
DRG4030	400*300
DRG400	400*400

CUSTOM RANGE

TYPE DG	Door Grille complete with telescopic back Frame manufactured of extruded Type 50S anodising grade aluminium. These grilles have fixed horizontal Chevron Louvres.		
Dimensions Fixing Options	W UD CF	= = =	Door Thickness Undrilled Standard Spring Clip can be supplied if door thickness W is ACCURATELY provided (Door thicknesses vary considerably

Note

Also available without frames

(Picture for illustration purposes only)

TYPE DG DOOR GRILLE

Frame Options Standar Telescopic Back Frame	= 20mm = 22mm		
Finish Options	NA BEW EPC	Natural AnodisedBaked Enamal WhiteEpoxy Powder Coating	
Blade Spacing	13mm Standard		

19mm 21mm 26mm

Note: (1) Dimensions given are for opening size into which grille will fit (i.e Normal Duct Size) (2) If code "OS" is entered under SPECIAL INSTRUCTIONS, then dimensions given are over flange.

(3) If 19, 21, 26mm Blade Spacing required, enter under SPECIAL INSTRUCTIONS.

ADVANTAGE AIR® DOOR GRILLES

DOOR GRILLES TYPE-DG-DR

CUSTOM RANGE

TYPE DG Door Grille without telescopic back frame manufactured of anodising grade aluminium. These grilles have fixed horizontal Chevron Louvres. For dark rooms and other areas where light sensitivity is critical, Type DG-DR is recommended.

TYPE DG-DR DOOR GRILLE

Frame Options		=	22mm Standard
Finish Options	NA	=	Natural Anodised
	BEB	=	Baked Enamel Matt White
	EPC	=	Epoxy Powder Coating Matt Black

Note: (1) Dimensions given are for opening size into which grille will fit (2) Horizontal dimension is given first.
STOCK RANGE EGG CRATE FILTER FRAME

MODEL NO.	SIZE MM
RAG595/595	595*595
RAG1195/595	1195*595

EGG CRATE GRILLES

ALUMINIUM FRAMES & EGGCRATE

MODEL	SIZE
NO.	MM
EC595	595*595 Eggcrate Grille
EC1195	1195*595 Eggcrate Grille
TF595/595	T-Frame 595*595
TF1195/595	T-Frame 1195*595

CUSTOM RANGE TYPE-ECP

TYPE EC

Egg Crate Grille manufactured with frame of extruded Type 50S anodising grade aluminium and high density styrene core.

Accessories

	OBD CF	= Oppo = Conce	sed Blad ealed Fi	de Damper xing
Dimensions	D	=	ON / N ON - O OS - O	ormal Duct Size ver Neck Size ver Flange
Frame Options	30mm	Standar	d	
Finish Options	A)	FRAME BEW	E NA	Natural Anodised AluminiumBaked Enamel White
	B)	CORE		 High Density Polystyrene Aluminium

Note: (1) Dimensions given are for 'OS' = Over Flange

EGG CRATE GRILLES TYPE-ECA

TYPE ECA

Egg Crate Grille manufactured with frame of extruded Type 50S anodising grade aluminium and the grid manufactured from 0,5mm aluminium sheet.

Accessories		OBD	=	Opposed Blade Damper
		CF	=	Concealed Fixing
	Dimensions	D	=	ON / Normal Duct Size ON - Over Neck Size OS - Over Flange
Frame	Options	30mm	Standar	ď
Finish	Options	NA BEW EPC	= = =	Natural Anodised Aluminium Baked Enamel White Epoxy Powder Coating

Note: (1) Dimensions given are for 'OS' = Over Flange

EGG CRATE GRILLES CORES

SPECIAL APPLICATIONS

EC & ECA CORES

EC & ECA Cores are available with a 10mm channel frame for "Drop In" Ceilings.

The channel frame fabricated of electro galvanised metal and painted.

Mitre cuts are not accurate as it is intended for channel to be hidden by ceiling "T".

Other Cores are also available on request

- Honeycomb (will required extended lead time to manufacture)
- 45° Angled Louvres
- Chrome Finish both Matt or Gloss

EGG CRATE GRILLES Details

WEATHER LOUVRES Type – WPL

TYPE WLP Weather Louvre manufactured of extruded Type 50S anodising grade aluminium. The fixed horizontal blades are held in place by screws. Blades are spaced 35mm apart.

Standard Spaci	ng	=	Top Blade fits flush with frame. Lip of Bottom Blade overlap frame.
Accessories	WM OBD	=	Wire Mesh Opposed Blade Damper NOTE: Adjustment from face of Louvre is not advisable. Holes
	FS	=	Rear Fixing Straps
Dimensions Notes	ON 1) Alter 2) For V 450 x RA w	= native M Veather 300 we vith RAR	Normal Duct Size eshes available on request. Louvres smaller than recommend the use of Type B Blade with19mm spacing.

TYPE WLP: WEATHER LOUVRE

Vermin Protection:	 Plastic Bird mesh - Standard Galvanised wire mesh 			
Frame Options	50mm 30mm	Standar	d	
Finish Options	NA BEC EPC	= = =	Natural Anodised Baked Enamel Colour Epoxy Powder Coating	

(Picture for illustration purposes only)

Note: (1) Dimensions given are for opening size into which grille will fit (2) If Code "OS" is entered under SPECIAL INSTRUCTIONS, then dimensions given are over flange.

ADVANTAGE AIR®

TYPE WL: WEATHER LOUVRE

Vermin Protection: - Plastic Bird mesh - Standard - Galvanised wire mesh

|--|

NA=Natural AnodisedBEC=Baked Enamel ColourEPC=Epoxy Powder Coating

Note: (1) Dimensions given are for ON size (2) If Code "OS" is entered under SPECIAL INSTRUCTIONS, then dimensions given are over flange

WEATHER LOUVRES Type – WL

ALUMINIUM DIFFUSION SUNDRY

Transfer Grilles

MODEL NO	NOMINAL NECK SIZE mm
TG3030	300*300 Transfer Grille
TG2020	200*200 Transfer Grille

INSULATION

TECHNICAL

GENERAL DESCRIPTION

Fibreglass Duct Board is a rigid high density resin bonded fibreglass board faced externally with a reinforced foil surface. The internal surface can be supplied with either a resin enriched surface or an on-line applied glass fibre tissue. The boards are used to manufacture a cost effective internal duct system incorporating excellent thermal and acoustic properties. The boards are lightweight and safe. Duct Board meets all the elements established for the requirements of a duct material set by TIMA. These include:

- a) Dimensional stability, deformation and deflection.
- b) Containment of the air being conveyed.
- c) Exposure to damage, weather, temperature extremes, flexibility or other in service condition.
- d) Support Duct Board is extremely versatile in everyday use. It is broadly accepted and specified for use in standard, thermal and acoustical ducting requirement. Duct Board meets the requirements of internationally recognized standards making bodies such as TIMA and SMACNA.

Duct Board Tools and Accessories

- * Shiplap grooving tools (spare blades available)
- * Carrying case
- * Peeler Knife
- * Male-Female hand tools
- * Round hole cutters
- * Duct lay-out square
- * Fasloop, wireloop banding tool for tie rod
- * reinforcement
- Staple guns manual or powered

DUCT BOARD INSULATION

- Pressure sensitive tape
- * Washers and screws for all securing needs
- * Turning vanes
- * Simple to install spigots
- Duct supports

LABEL	SIZE	QTY
200X1 200 -un-lined		Each
2400X1 200X24-tissue-lined		Each
Ductboard Tape	55m	
G.S.S Screws	100	
G.S.P. Wsh. (Pin)	100	
G.S.H. Wsh (Hole)	100	
G.S.H Wsh.(Sqre.)	100	
Staples	5000	
Angle Flange 50X50X2400		Each
Ductboard Spigots	102mm	Each
	127mm	Each
	152mm	Each
	180mm	Each
	203mm	Each
	229mm	Each
	254mm	Each
	305mm	Each
	356mm	Each
	406mm	Each
	457mm	Each
	508mm	Each
Staper-Manual(Loose Sup)		Each
Shiplap Kit-Complete Inc. 1,2,3,4,5 Tools, Construct. Man. Folding Square, Round Hole Cutter, Cutsall (M/F) Tool, PeelerKnife, Wire Loop Tool,Stapler 0 manual and carry case		Each

INSULATION

Insulation Data Sheet:

modiation Bata on	000				
Description	Thickness	Volumetric Mass	Thermal	Temperature	Fire Rating
	(mm)	(kg/m)	Conductivity (W/mºC)	Limits	

External Duct Wrap (FRK):

	• (
Duct Wrap 25	25	18	0.040(@35 C)	120 C	Class 1
Duct Wrap 40	40	16	0.040(@35 C)	120 C	Class 1
Duct Wrap 50	50	16	0.040(@35 C)	120 C	Class 1

Internal Acoustic Linings:

Sonic Liner 15	15	32	0.035(@20 C)	120 C	Class 1
Sonic Liner 25	25	24	0.0378(@20 C)	120 C	Class 1

General Data Sheet:

Description	Thickness	Volumetric Mass	Thermal	Temperature	Fire Rating
	(mm)	(kg/m)	Conductivity	Limits	
			(W/m∘C)		

Batt and Rolls:

MP 16 (Eroglite 16)	25 – 75	16	0.040(@24 C)	250 C	Class 1
IM 24 (Eroglite 24)	25 – 75	24	0.0378(@24 C)	250 C	Class 1
IM 475 (Eroglite 475)	25 – 75	47.5	0.033(@24 C)	450 C	Class 1
IM 64 (Eroglite 64)	25 – 75	64	0.0323(@24 C)	450 C	Class 1
IM 96 (Eroglite 96)	25 - 75	96	0.035 (@24 C)	250 C	Class 1

Example of how to calculate the noise attenuation of internal ducting: What will the noise attenuation of a 1m duct with a section of OAO x OAO m in a frequency band of 260Hz, insulated with sonic liner be?

△ dB = 1,05 x a ^{1,4 x P/8} L Assembled a = 0,51 a^{1,4} = 0,39 1,60 m = 10 (0,40 + 0,40) x 2 0,40 x 0,40 0,16 m² <u>A dB</u> = 1,05 x 0,39 x 10 = 4,10 dB per metre.

INSULATION Technical DUCT WRAP

DUCT WRAP THERMAL INSULATION BLANKET

DUCT WRAP is specifically designed as a thermal insulation blanket manufactured from highly resistant, organic glass fibre bonded with a resin. It is faced with an aluminium foil/skrim – reinforced kraft laminate providing a resistant surface finish and an excellent vapour barrier. A 120 mm overlapping flange is provided on one side for a neater appearance and adequate seal. DUCT WRAP is available in standard

APPLICATIONS

Duct Wrap is designed for application to rectangular and round heating, ventilation and air conditioning duct systems where the operating temperature is less than 120°C in commercial, industrial and residential buildings.

BENEFITS

Energy conservation, lower operating costs, ease of installation, greater

CODE	DISCRIPTION
IDW02100	DUCTWRAP (FRK) 10M X 1.2M X 25MM
ISOVER - FRK	DUCTWRAP (FRK) 10M X 1.2M X 50MM

SONIC LINER

APPROVED ACOUSTIC BLANKET

SONIC LINER is an approved flexible fibreglass blanket faced with an acoustically permeable black woven glass cloth on the air stream surface. SONIC LINER is specifically designed as an acoustical and thermal liner for sheet metal ducting and is fully approved by consulting engineers. SONIC LINER is inert, ensuring long life; it is fire safe and erosion resistant.

SONIC LINER is available in 15mm, 25mm and 50mm thickness to meet your design requirements.

APPLICATIONS

Sonic Liner is specifically designed as an interior acoustical installation liner for sheet metal ducts in heating, ventilation and air conditioning systems operating at temperatures of up to 120°C and air velocities up to 20m/s.

BENEFITS

Designed and tested, sound absorption, convenience, fire safe, longer erosion resistant and environmental control.

CODE	DISCRIPTION
ION025100	SONIC LINER 10M X 1.2M X 25MM
IONO50100	SONIC LINER 10M X 1.2M X 50MM

INSULATION Technical

There are a variety of products available in both fibre glass and mineral wool (rockwool) suited to any application. The products can be supplied with a combination of facing materials to meet different specifications.

FIBRE GLASS

Specifically designed as thermal or acoustic blankets and batts, manufactured from highly resistant, inorganic glass fibre or bonded with thermo-setting resin. They are made in board-form (type 1M) and roll-form (Type IW). The products are available in different thicknesses and densities that permit selection of a product to meet the majority of applications.

I.P. INSULWOOL (ROCKWOOL)

Insulwool is composed of a unique specialised mineral fibre; spun by a special process from molten rock and slag having high silica and alumina values. They are bonded into various thicknesses and densities with specifically formulated moisture resistant resins. The method of manufacture results in a highly versatile, inexpensive, all purpose thermal and acoustic insulating product.

SIZE	GEN. INSUL.
1200 x 600 x 25	IM24 Eneremlite 24)
1200 x 600 x 40	IM24 Eneremlite 24)
1200 x 600 x 50	IM24 Eneremlite 24)
1200 x 600 x 75	IM24 Eneremlite 24)
1200 x 600 x 100	IM24 Eneremlite 24)
8000 x 1200 x 40	IM24 Eneremlite 24)
5000 x 1200 x 50	IM24 Eneremlite 24)
3000 x 1200 x 75	IM24 Eneremlite 24)
1200 x 600 x 25	IM475 (Eneremlite 475)
1200 x 600 x 40	IM475 (Eneremlite 475)
1200 x 600 x 50	IM475 (Eneremlite 475)
10000 x 1200 x 25	IM475 (Eneremlite 475)
8000 x 1200 x 40	IM475 (Eneremlite 475)
5000 x 1200 x 50	IM475 (Eneremlite 475)
1200 x 600 x 25	(Eneremlite 64)
1200 x 600 x 40	(Eneremlite 64)
1200 x 600 x 50	(Eneremlite 64)
1200 x 600 x 25	(Eneremlite 96)
10000 x 1200 x 40)	(Eneremlite 16)
5000 x 1200 x 50	(Eneremlite 16)
10000 x 1200 x 25	(Eneremlite 18)
5000 x 1000 x 40	Insulfelt 60
5000 x 1000 x 50	Insulfelt 60
1000 x 500 x 40	Insulboard 60
1000 x 500 x 50	Insulboard 60
1000 x 500 x 75	Insulboard 60
1000 x 500 x 100	Insulboard 60

DAMPERS

OPPOSED BLADE DAMPER - Type – OBD

Determine the sound level which results from the combined effects of several sound sources is not as difficult as it is confusing.

- The NY data for diffusers given contains an allowance for the sound absorbing properties of the average room and its contents.
- This absorption is assumed to be 8 db with sound power level referenced to 10-12 Watts. (The absorption is 18 db referenced to 10-13 Watts)?
- For relatively small spaces about 76.2m2 or less floor area and ceiling height of 3.0m or less the following simplified method for estimating NC levels produced by a combination of supply diffusers and return registers or grilles can be used:
- 1. Determine the difference in NC level between the supply outlets or return intakes having the highest NC and the second highest NC level.
- 2. From Table 9 determine the number of decibels to be added to the NY level of the unit having the highest NC level. This sum is the combined NC level generated by the two units.
- 3. If three units serve the space, determine the difference between the combined NC levels of the first two units and the NC level of the third unit. Determine the NC addition as above, and add this to the combined NC level of the first two units.

If the difference between NC levels of two units is 10 db or more, the sound generated by the quieter unit will not affect the space NC.

EXAMPLE

Two supply diffusers having an NC level of 30 and a return grille having an NC level of 35 serve a room. What is the combined NC level?

SOLUTION

The return has the highest NC level 35 db. The second highest is one of the diffusers at 30 db. The difference between them is 5 db. From Table 6, the NC addition for a 5 db difference is about one. Adding this to the higher NC gives a combined NC of 36.To take the second diffuser into consideration, follow the same procedure as above. The NC calculated above is 36. The NC of the diffuser is 30. The difference between them is 6. The NC addition for this difference is 1, and the combined effect of the two diffusers and the return grille is NC 37.

OPPOSED BLADE DAMPER

from extruded aluminium Blades. Blades are held in place by spring wire

TYPE OBD: Opposed Blade Damper manufactured

and starlock push on fix.

diffusers.

The OBD blades are linked and lever or slot operated. OBD suits all standard grilles and

BLADE OPTIONS:	Standard as per sketch		
FINISH OPTIONS:	PR MF	= Primed Black (optional) = Mill Finish (standard)	
BLADE SPACING:	25mm Standard		

Note: (1) Dimensions given are for - To fit ON of mother grille (2) If OBD to fit grille, indicate type of grille, outside neck size.

DAMPER HARDWARE TECHNICAL

Heavy gauge plated steel quadrants with wing Nuts for locking of damper. Frame marked to Indicate exact position of damper

MODEL KS 12

Suitable for dampers up to 760mm. Set consists of:

- 13mm Quadrant
- KP 10 R Round end bearing
- KP 10 S Square end bearing

DAMPER HARDWARE

MODEL KS 385

These heavy gauge Plated Steel quadrants are designed with excellent handle action as well as quick wing nut adjustment and locking of the damper. The frame is marked to show the exact position of the damper. For use on square or round ducts.

Suitable for dampers up to 500mm. Set consists of:

- 10mm Quadrant
- KP 7 Spring end bearing
- KP 9 S Square end bearing

DAMPER HARDWARE

MODEL KL 7 (R)

1/2" SHAFT LOC QUADRANT SETS - (FOR DAMPERS UP TO 30")

"Shaft Loc" Quadrants are stamped of heavy gauge steel and clearly indicate the position of the damper. The quadrant handle (available for either the $\frac{1}{2}$ " square or round shafts) is unique in that it locks the shaft of the damper to it by means of a powerful friction holding device strong enough to cut into the damper shaft eliminating damper rattle. The shaft is easily locked with $\frac{1}{2}$ " open end wrench. Available for square or round ducts.

1/2" SHAFT LOC QUADRANT SETS				
ITEM#	MODEL	SHAFT DESCRIPTION		
8063	KL7	1/2" Square loc quadrant		
8064 KL7R 1/2" Round loc quadrant				
PACKE	D 100 PEF	R CARTON		

KL7

KL7R

KL7R Section view

ADVANTAGE AIR®

DAMPER HARDWARE

MODEL KS 145

These heavy gauge plated steel regulators are among the most popular on the market. They minimize air leakage and reduce rattle. A wing nut locks the damper in position, yet permits quick readjustment. The dial shows the damper position at a glance. The regulator mounts easily on round or square ducts.

Suitable for dampers up to 250mm. Set consists of:

- 6mm Regulator
- KP 6 Spring end bearing
- KP 8 S Square end bearing

ACCESSORIES ACCESS DOORS TECHNICAL

Access panels

The four sizes of access door provide a broad range of "accessibility options" for fire dampers, coils, filters and controls etc. The large APO and API are designed for "torso entry" whereas the AP2 and AP3 for twohanded and single handed access respectively. As the doors are deep formed they are dimensionally uniform and eliminate air leakage up to 200mm W.O. The design enables fast installation and the plated sash fasteners allow for speedy and simple access

CONSTRUCTION FRAME PANEL

0,8mm Galvanised Steel Outer panel 0.8mm Galvanised Steel Inner panel 0.6mm Galvanised Steel 25mm Fibreglass Heat welded PVC Extrusion Sashtype Zinc Plated

INSULATION GASKET GASTENERS

MODEL	NOM. SIZE	AxB	C x D	ExF
AP0	650 x 510	698 x 546	648 x 500	610 x 464
AP1	500 x 375	546 x 419	500 x 268	464 x 327
AP2	375 x 240	419 x 286	375 x 241	330 x 197
AP3	240 x 150	289 x 194	241 x 149	206 x 116

SECTION THROUGH DOOR AND FRAME

ADVANTAGE AIR insulated access doors shall be supplied and installed for access to all fire dampers etc. mounted within the ductwork. Doors shall be deep drawn from prime quality galvanised steel and shall incorporate a heat welded tubular P.VC. gasket mechanically fixed to eliminate air leakage up to 200mm W.G Doors shall be removable and selected to match duct sizes. The maximum size door shall be installed to provide easiest access

Air travelling throughout a duct is slowed up when it reaches a right angle turn. The "Slow-up" is detrimental to the efficiency of the duct system, therefore air turning vane assemblies are used to guide air evenly around such turns. With today's high labour costs, it is expensive for shops to produce their own air turning assemblies. That's why Airturn rail is a major contribution to sheet metal shops that require efficiency, yet inexpensive air turning vane assemblies.

FAST, LOW COST ASSEMBLY

With Airturn Rail, which is a pre-fabricated side rail, layout time is eliminated. Vanes can be sheared from scrap metal without tab cutting, and quickly assembled to rails with only one blow of a ball penhammer.

ADVANTAGE AIR®

DUCTLOK FLANGING & FASTENERS

THE TOTAL DUCT FLANGE SYSTEM

FLEXIBLE DUCTING

DUCTLOK FLANGE

A roll formed galvanized steel angle incorporating a permanent non hardening sealent, which guarantees a dependable air tight connection - eliminates the need for post installation sealing of the duct.

REINFORCEMENT BEAD

The unique DUCTLOK REFORCEMENT bead make the flange stronger than conventional flanges, thereby reducing the necessity for many different gauges of flange profiles. DUCTLOK produces only 2 sizes to cove all applications. (DUCTLOK JUNIOR - 25mm x 0.8mm, DUCTLOK SENIOR -35mm x I.OOmm).

JOINING CLAMP

Ductlok Bolt-on flange clamp for clamping of duct flange joints.

REINFORCEMEN

BEAD

CORNER PIECE

The Ductlok corner piece is ribbed and edged flanged for extra rigidity and features a embossed dimple ensuring extra tight corner joint. The bolt hole is suitable for carriage type or normal bolt corners, available in 2 sizes Junior and Senior.

TECHNICAL

GASKET TAPE

A Butyl rubber sealant strip for insertion between Ductlok flanges. Easily installed. The tape is water, heat and UV resistant.

HANGER BOLT

The Ductlok Hanger Bolt is new concept in reducing yo duct hanging costs. When fitted

to the Ductlok corner piece in place of a normal of carriage bolt, a length of threaded duct hanging rod can be fitted through the hanger bolt, thus permitting the duct hanger to be fixed the corner piece.

Assembly and installation data:

DUCTLOK FLANGING & FASTENERS

TECHNICAL

Assembly and install	ation data: (continued)			
CODE	DUCTLOK	QTY		
FLANGE - JNR	Junior flange (25mm)	5 metre		
FLANGE - SNR	Senior flange	5 metre		
DLC JNR	Junior Corner	100		
DLC SNR	Senior Corner	100		
DLC	Ductlok Clamp	100		
	-			
DU	CTLOK	QTY		
Gaske	ting (5mm)	10		
Ousice		metre		
Eurostick Caskat (6mm)		60		
Eurostick Gasket (omm)		metre		
Ductlok Hanger Bolt		10		
			·	
DU	CTLOK	QTY	ATT I	
Bar Cleat (reinforced cleat)		2400		
Dai Cleat (Teiriloiced cleat)		mm		
Drive Cleat		2400		
		mm		
S	Cleat	2400		
5 Cleat		mm		

ADVANTAGE AIR CODE	DESCRIPTION
SH01	HAND STRAPPING 12MM X 1500MTR - BLACK
BP01	PLASTIC BUCKLES 12MM P/1000
CANCOLLAR	CANVAS COLLAR (DUCT CONNECTOR) 25MTR
QUICKTIE	Q-BAND 25MTR
QUICKCLIP	Q-CLIPS PACK OF 100

Advantage Air is able to offer, effective and economical insulation fastening systems to meet your needs. These range from pins and washers, clip pins and hand held spotters, right through to automatic rolling and bulk feed pinspotters. The PN spotter pin and washer are used with the lightweight hand held LF2000 pin spotter - the industry standard . The CP clip pins with an integral nail washer are used with the MFPT, PBFS and other automatic pinspotters. CP clip pins by Duro Dyne have "lathe cut" points to ensure uniformly precise points and easy push through. Avoid imitations and settle for the leader.

ADVANTAGE AIR®

DVK VALVES TECHNICAL

PLASTIC EXHAUST

PLASTIC AIR VALVE WITH CONNECTION BUSH.

PRODUCT PROPERTIES

- * Diameter range 100, 125, 150 and 200 mm
- * Manufactured from white polypropylene (RAL 9003) with a heat resistance up to 100 degrees Celsius
- * Suitable for rooms with a high air humidity (e.g. kitchen and bathroom)
- * Easy to remove for cleaning purposes
- * Air quantity can be adjusted continuously

DIMENSIONS (IN MILLIMETRES)

DVK	Ø100	Ø125	Ø150	Ø 200
A	80	100	118	171
В	148	168	186	240
С	87	106	130	178
D	20	20	20	20

METAL EXHAUST

METAL EXHAUST AIR VALVE WITH FIXING COLLAR.

PRODUCT PROPERTIES

- * Diameter range 100, 125, 150 and 200 mm
- * Manufactured from powder coated steel
- * Standard colour white (RAL 9010)
- * Air quantity can be adjusted continuously
- * The combination of fixing collar with bayonet catch and sealing tape provides an optimal sealing
- * A fixing collar is included

DIMENSIONS (IN MILLIMETRES)

DVS	ø 100	ø 150	ø 200
А	74	174	155
В	139	202	248
С	94	135	194
D	47	60	63
E	50	50	50

METAL EXHAUST

METAL SUPPLY AIR VALVE WITH FIXING COLLAR.

PRODUCT PROPERTIES

- * Diameter range 100, 150 and 200 mm
- * Manufactured from powder coated steel
- * Standard colour white (RAL 9010)
- * With adjustable, centric, rotating valve for regulation of the air quantity.
- * Optimal sealing is achieved by the sealing ring
- * A connection bush is included

(DIMENSIONS (IN MILLIMETRES)

DVS -	ø 100	ø 150	ø 200
Α	74	117	155
В	139	202	248
С	94	135	194
D	47	60	63
E	50	50	50

ADVANTAGE AIR®

DVK VALVES

STOCK RANGE

ADVANTAGE AIR CODE	DESCRIPTION
DVS100	DISC VALVE STEEL 100MM DIA
DVS125	DISC VALVE STEEL 125MM DIA
DVS150	DISC VALVE STEEL 150MM DIA
DVS200	DISC VALVE STEEL 200MM DIA
VEF-10	DISC VALVE PLASTIC 100MM DIA
VEF-12	DISC VALVE PLASTIC 125MM DIA
VEF-16	DISC VALVE PLASTIC 150MM DIA
VEF-20	DISC VALVE PLASTIC 200MM DIA

SUNDRY ITEMS

PINS & WASHERS

ADVANTAGE AIR CODE	DESCRIPTION
WELD PINS	WELD PINS FTC12 P/5000
WELD P2	WELD PINS FTC12 P/5000
SPOTPIN	PN114 SPOTTER PINS FOR 1" DUCTLINER P/1000
EC2 WASHER	EC2 WASHERS P/1000
ADH SELF	SELF ADHESIVE PINS & WASHERS P/500
SPOTCLIP	PC1 SPOTTER CLIPS FOR PN PINS P/1000
SPOTPIN2	PN200 SPOTTER CLIPS FOR 2" DUCTLINER P/1000
SPOTPIN1-2	PN34 SPOTTER PINS FOR 1/2" DUCTLINER P/1000
CAM-LOK	CAMLOK P/EA

FILTER MEDIA

NL100150

FILTER MEDIA 100G SOLD PER METRE

ADHESIVES / SILICONE / SEALERS

B611 INSULATION	B611 - INSULATION ADHESIVE 20LTR
M622 - DUCT SEAL	M622 - DUCT SEALER 5LTR
280ML DUCT SEAL	M622 DUCT SEALER CARTRIDGE 280ML (12 per box)
TBE2 - BITUMEN	TBE2 - BITUMEN EMULSION 20LTR
B603 - POLYSTYRENE	B603 - POLYSYRENE ADHESIVE 5LTR
V435 ADHESIVE	V435 - SUPER GRADE CONTACT ADHESIVE 25LTR
M634J JAYCOSTIC	M634J - JAYCOSTIC 6MM X 60M
M77/4 - 280ML	280ML SILICONE GREY
HM73 - GLUE STICKS	HM73 - GLUE STICKS 10KG
VAP-01	GEN PURPOSE VAPOUR BARRIER 5LTR P2191

TAPE

DT	PVC DUCT TAPE
SATF3001ADVA48	ALUMINIUM FOIL TAPE 48mm x 50m
VEN1599B	VENTURE TAPE
SC171VADVA48	GREY CLOTH TAPE 48mm x 25m

SILICONE

892317010	SILICONE - CLEAR
892317011	SILICONE - WHITE

CONDENSER BRACKETS

223AC450P	450 Powder Coated bracket
223AC450H	450 Galvanised bracket
223AC600P	600 Powder Coated bracket
223AC60H	600 Galvanised bracket

SUNDRY ITEMS

CASTELLATED COLLAR

ADVANTAGE AIR CODE	DESCRIPTION
CC10	100 DIA
CC15	150 DIA
CC20	200 DIA
CC25	250 DIA
CC30	300 DIA
CC35	350 DIA
CC40	400 DIA
CC45	450 DIA
CC50	500 DIA
CC55	550 DIA

DUCT JOINERS

DJ10	100 DIA
DJ15	150 DIA
DJ20	200 DIA
DJ25	250 DIA
DJ30	300 DIA
DJ35	350 DIA
DJ40	400 DIA
DJ45	450 DIA
DJ50	500 DIA
DJ55	550 DIA

CLAMPS

100HFGS60	100 DIA CLAMP
100HFGS92	150 DIA CLAMP
10HFGS112	175 DIA CLAMP
10HFGS128	200 DIA CLAMP
10HFGS160	250 DIA CLAMP
10HFGS188	300 DIA CLAMP
10HFGS224	350 DIA CLAMP
10HFGS252	400 DIA CLAMP
10HFGS284	450 DIA CLAMP
10HFGS316	500 DIA CLAMP
10HFGS340	550 DIA CLAMP

NOTES